如圖,在平面直角坐標(biāo)系中,已知矩形AOBC的頂點(diǎn)C的坐標(biāo)是(2,4),動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿線段AO向終點(diǎn)O運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿線段BC向終點(diǎn)C運(yùn)動(dòng).點(diǎn)P、Q的運(yùn)動(dòng)速度均為1個(gè)單位,運(yùn)動(dòng)時(shí)間為t秒.過點(diǎn)P作PE⊥AO交AB于點(diǎn)E.

(1)求直線AB的解析式;

(2)設(shè)△PEQ的面積為S,求S與t時(shí)間的函數(shù)關(guān)系,并指出自變量t的取值范圍;

(3)在動(dòng)點(diǎn)P、Q運(yùn)動(dòng)的過程中,點(diǎn)H是矩形AOBC內(nèi)(包括邊界)一點(diǎn),且以B、Q、E、H為頂點(diǎn)的四邊形是菱形,直接寫出t值和與其對(duì)應(yīng)的點(diǎn)H的坐標(biāo).


解:(1)∵C(2,4),

∴A(0,4),B(2,0),

設(shè)直線AB的解析式為y=kx+b,

,

解得

∴直線AB的解析式為y=﹣2x+4.

(2)如圖2,過點(diǎn)Q作QF⊥y軸于F,

∵PE∥OB,

==

∴有AP=BQ=t,PE=t,AF=CQ=4﹣t,

當(dāng)0<t<2時(shí),PF=4﹣2t,

∴S=PE•PF=×t(4﹣2t)=t﹣t2

即S=﹣t2+t(0<t<2),

當(dāng)2<t≤4時(shí),PF=2t﹣4,

∴S=PE•PF=×t(2t﹣4)=t2﹣t(2<t≤4).

(3)t1=,H1),

t2=20﹣8,H2(10﹣4,4).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


如圖分別是某班全體學(xué)生上學(xué)時(shí)乘車、步行、騎車人數(shù)的分布直方圖和扇形統(tǒng)計(jì)圖(兩圖都不完整),下列結(jié)論錯(cuò)誤的是( 。

 

A.

該班總?cè)藬?shù)為50人

B.

步行人數(shù)為30人

 

C.

乘車人數(shù)是騎車人數(shù)的2.5倍

D.

騎車人數(shù)占20%

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


 

某企業(yè)設(shè)計(jì)了一款工藝品,每件的成本是50元,為了合理定價(jià),投放市場(chǎng)進(jìn)行試銷.據(jù)市場(chǎng)調(diào)查,銷售單價(jià)是100元時(shí),每天的銷售量是50件,而銷售單價(jià)每降低1元,每天就可多售出5件,但要求銷售單價(jià)不得低于成本.

(1)求出每天的銷售利潤(rùn)y(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;

(2)求出銷售單價(jià)為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少?

(3)如果該企業(yè)要使每天的銷售利潤(rùn)不低于4000元,且每天的總成本不超過7000元,那么銷售單價(jià)應(yīng)控制在什么范圍內(nèi)?(每天的總成本=每件的成本×每天的銷售量)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖是一個(gè)由多個(gè)相同小正方體搭成的幾何體的俯視圖,圖中所標(biāo)數(shù)字為該位置小正方體的個(gè)數(shù),則這個(gè)幾何體的左視圖是( 。

 

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E,點(diǎn)P在⊙O上,∠1=∠BCD.

(1)求證:CB∥PD;

(2)若BC=3,sin∠BPD=,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


若用湘教版初中數(shù)學(xué)教材上使用的某種計(jì)算器進(jìn)行計(jì)算,則按鍵的結(jié)果為( 。

 

A.

21

B.

15

C.

84

D.

67

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


不等式x+3<﹣1的解集是 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖所示的立體圖形,它的正視圖是( 。

 

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,為測(cè)量某建筑物的高度AB,在離該建筑物底部24米的點(diǎn)C處,目測(cè)建筑物頂端A處,視線與水平線夾角∠ADE為39°,且高CD為1.5米,求建筑物的高度AB.(結(jié)果精確到0.1米)(參考數(shù)據(jù):sin39°=0.63,cos39°=0.78,tan39°=0.81)

查看答案和解析>>

同步練習(xí)冊(cè)答案