如圖所示的立體圖形,它的正視圖是( 。

 

A.

B.

C.

D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


如圖,△ABC的頂點(diǎn)都在方格線的交點(diǎn)(格點(diǎn))上,如果將△ABC繞C點(diǎn)按逆時針方向旋轉(zhuǎn)90°,那么點(diǎn)B的對應(yīng)點(diǎn)B′的坐標(biāo)是  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在平面直角坐標(biāo)系中,已知矩形AOBC的頂點(diǎn)C的坐標(biāo)是(2,4),動點(diǎn)P從點(diǎn)A出發(fā),沿線段AO向終點(diǎn)O運(yùn)動,同時動點(diǎn)Q從點(diǎn)B出發(fā),沿線段BC向終點(diǎn)C運(yùn)動.點(diǎn)P、Q的運(yùn)動速度均為1個單位,運(yùn)動時間為t秒.過點(diǎn)P作PE⊥AO交AB于點(diǎn)E.

(1)求直線AB的解析式;

(2)設(shè)△PEQ的面積為S,求S與t時間的函數(shù)關(guān)系,并指出自變量t的取值范圍;

(3)在動點(diǎn)P、Q運(yùn)動的過程中,點(diǎn)H是矩形AOBC內(nèi)(包括邊界)一點(diǎn),且以B、Q、E、H為頂點(diǎn)的四邊形是菱形,直接寫出t值和與其對應(yīng)的點(diǎn)H的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


計算:﹣4cos30°+(π﹣3.14)0+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,點(diǎn)A是⊙O上一點(diǎn),OA⊥AB,且OA=1,AB=,OB交⊙O于點(diǎn)D,作AC⊥OB,垂足為M,并交⊙O于點(diǎn)C,連接BC.

(1)求證:BC是⊙O的切線;

(2)過點(diǎn)B作BP⊥OB,交OA的延長線于點(diǎn)P,連接PD,求sin∠BPD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


在△ABC中,AB=AC=5,sinB=,⊙O過點(diǎn)B、C兩點(diǎn),且⊙O半徑r=,則OA的值( 。

 

A.

3或5

B.

5

C.

4或5

D.

4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


對于平面直角坐標(biāo)系中任意兩點(diǎn)P1(x1,y1)、P2(x2,y2),稱|x1﹣x2|+|y1﹣y2|為P1、P2兩點(diǎn)的直角距離,記作:d(P1,P2).若P0(x0,y0)是一定點(diǎn),Q(x,y)是直線y=kx+b上的一動點(diǎn),稱d(P0,Q)的最小值為P0到直線y=kx+b的直角距離.令P0(2,﹣3).O為坐標(biāo)原點(diǎn).則:

(1)d(O,P0)= 。

(2)若P(a,﹣3)到直線y=x+1的直角距離為6,則a= 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在⊙O中,AB是直徑,BC是弦,點(diǎn)P是上任意一點(diǎn).若AB=5,BC=3,則AP的長不可能為(  )

 

A.

3

B.

4

C.

D.

5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


楊梅是漳州的特色時令水果,楊梅一上市,水果店的老板用1200元購進(jìn)一批楊梅,很快售完;老板又用2500元購進(jìn)第二批楊梅,所購件數(shù)是第一批的2倍,但進(jìn)價比第一批每件多了5元.

(1)第一批楊梅每件進(jìn)價多少元?

(2)老板以每件150元的價格銷售第二批楊梅,售出80%后,為了盡快售完,決定打折促銷,要使第二批楊梅的銷售利潤不少于320元,剩余的楊梅每件售價至少打幾折?(利潤=售價﹣進(jìn)價)

查看答案和解析>>

同步練習(xí)冊答案