【題目】如圖,正方形ABCD中,點(diǎn)P,Q分別為AD,CD邊上的點(diǎn),且DQ=CP,連接BQ,AP.求證:BQ=AP.
【答案】證明:∵四邊形ABCD是正方形, ∴∠BAQ=∠ADP=90°,AB=DA,
∵DQ=CP,
∴AQ=DP,
在△ABQ和△DAP中,
,
∴△ABQ≌△DAP(SAS),
∴BQ=AP.
【解析】直接利用正方形的性質(zhì)得出AQ=DP,再利用全等三角形的判定與性質(zhì)得出答案.
【考點(diǎn)精析】利用正方形的性質(zhì)對題目進(jìn)行判斷即可得到答案,需要熟知正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,AB=BC,∠ABC=90°,點(diǎn)D是AB的中點(diǎn),連接CD,過點(diǎn)B作BG⊥CD,分別交CD,CA于點(diǎn)E,F(xiàn),與過點(diǎn)A且垂直于AB的直線相交于點(diǎn)G,連接DF,給出以下五個結(jié)論: ① ;②∠ADF=∠CDB;③點(diǎn)F是GE的中點(diǎn);④AF= AB;⑤S△ABC=5S△BDF ,
其中正確結(jié)論的序號是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,∠C=90°
(1)利用尺規(guī)作∠B 的角平分線交AC于D,以BD為直徑作⊙O交AB于E(保留作圖痕跡,不寫作法);
(2)綜合應(yīng)用:在(1)的條件下,連接DE ①求證:CD=DE;
②若sinA= ,AC=6,求AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面直角坐標(biāo)系中,正確表示函數(shù)y=kx+k(k≠0)與y= (k≠0)的圖象的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)y= 圖象與性質(zhì)進(jìn)行了探究,下面是小東的探究過程,請補(bǔ)充完整,并解決相關(guān)問題:
(1)函數(shù)y= 的自變量x的取值范圍是;
(2)如表是y與x的幾組對應(yīng)值.
x | … | ﹣2 | ﹣1 | ﹣ | 0 |
| 1 |
| 2 |
| 3 | 4 | … |
y | … |
|
|
| 2 |
| 4 |
| 2 |
|
| m | … |
表中m的值為;
(3)如圖,在平面直角坐標(biāo)系中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點(diǎn),根據(jù)描出的點(diǎn),畫出函數(shù)y= 的大致圖象;
(4)結(jié)合函數(shù)圖象,請寫出函數(shù)y= 的一條性質(zhì).
(5)解決問題:如果函數(shù)y= 與直線y=a的交點(diǎn)有2個,那么a的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年“中秋”節(jié)前,朵朵的媽媽去超市購買了大小、形狀、重量等都相同的五仁和豆沙月餅若干,放入不透明的盒中,此時從盒中隨機(jī)取出五仁月餅的概率為 ;爸爸從盒中取出五仁月餅3只、豆沙粽子7只送給爺爺和奶奶后,這時隨機(jī)取出五仁月餅的概率為 .
(1)請你用所學(xué)知識計(jì)算:媽媽買的五仁月餅和豆沙月餅各有多少只?
(2)若朵朵一次從盒內(nèi)剩余月餅中任取2只,問恰有五仁月餅、豆沙月餅各1只的概率是多少?(用列表法或樹狀圖計(jì)算)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com