【題目】下列函數(shù)中,y隨x的增大而增大的是(
A.y=
B.y=﹣x+5
C.y= x
D.y= (x<0)

【答案】C
【解析】解:A、∵函數(shù)y= 中,k=3>0,∴在每一象限內(nèi)y隨x增大而減小,故本選項錯誤; B、∵函數(shù)y=﹣x+5中,k=﹣1<0,∴y隨x增大而減小,故本選項錯誤;
C、∵函數(shù)y= x中,k= >0,∴y隨x增大而增大,故本選項正確;
D、∵函數(shù)y= x2(x<0)中,a= >0,∴函數(shù)的開口向上,在對稱軸的左側(cè)y隨x增大而減小,故本選項錯誤.
故選C.
【考點精析】根據(jù)題目的已知條件,利用一次函數(shù)的性質(zhì)和反比例函數(shù)的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握一般地,一次函數(shù)y=kx+b有下列性質(zhì):(1)當(dāng)k>0時,y隨x的增大而增大(2)當(dāng)k<0時,y隨x的增大而減;性質(zhì):當(dāng)k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內(nèi)y值隨x值的增大而減; 當(dāng)k<0時雙曲線的兩支分別位于第二、第四象限,在每個象限內(nèi)y值隨x值的增大而增大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某社會團體組織人員參觀皇窯瓷展,主辦方對團體購票實行優(yōu)惠:在原定票價的基礎(chǔ)上,每張降價40元,則按原定票價需花費6000元購買門票,現(xiàn)在只花了4000元.
(1)求每張門票原定的票價;
(2)在展覽期間,平均每天可售出個人票2000張,現(xiàn)主辦方?jīng)Q定對個人購票也采取優(yōu)惠措施,發(fā)現(xiàn)原定票價每降低2元,平均每天可多售出個人票40張,若要使平均每天的個人票收入達到241500元,且能有效控制游覽人數(shù),則票價應(yīng)降低多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,正方形ABCD中,∠MAN=45°,∠MAN繞點A順時針旋轉(zhuǎn),它的兩邊分別交CB、DC(或它們的延長線)于點M、N,AH⊥MN于點H.
(1)如圖①,當(dāng)∠MAN繞點A旋轉(zhuǎn)到BM=DN時,請你直接寫出AH與AB的數(shù)量關(guān)系:
(2)如圖②,當(dāng)∠MAN繞點A旋轉(zhuǎn)到BM≠DN時,(1)中發(fā)現(xiàn)的AH與AB的數(shù)量關(guān)系還成立嗎?如果不成立請寫出理由,如果成立請證明;
(3)如圖③,已知∠MAN=45°,AH⊥MN于點H,且MH=2,NH=3,求AH的長.(可利用(2)得到的結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)y=kx﹣3的圖象如圖所示,則一元二次方程x2+x+k﹣1=0根的存在情況是( )

A.有兩個不相等的實數(shù)根
B.有兩個相等的實數(shù)根
C.沒有實數(shù)根
D.無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于下列各組條件,不能判定≌△的一組是

A. A=A′,B=B′AB=A′B′

B. A=A′,AB=A′B′AC=A′C′

C. A=A′,AB=A′B′BC=B′C′

D. AB=A′B′,AC=A′C′,BC=B′C′

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD,從頂點A引兩條射線分別交BC,CD于點E,F(xiàn),且∠EAF=45°.

求證:BE+DF=EF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知CACB,點E,F在射線CD上,滿足∠BECCFA,且∠BECECBACF=180°.

(1)求證:BCE≌△CAF;

(2)試判斷線段EF,BE,AF的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,點P,Q分別為AD,CD邊上的點,且DQ=CP,連接BQ,AP.求證:BQ=AP.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,∠XOY=90°,點AB分別在射線OXOY上移動,BE∠ABY的平分線,BE的反向延長線與∠OAB的平分線相交于點C,試問∠ACB的大小是否發(fā)生變化?如果保持不變,請給出證明;如果隨點A、B移動發(fā)生變化,請求出變化范圍.

查看答案和解析>>

同步練習(xí)冊答案