如圖,已知一次函數(shù)y=的圖象與x軸交于A點,與y軸交于B點:拋物線y=的圖象余一次函數(shù)y=的圖象交于B、C兩點,與x軸交于D、E兩點,且點D的坐標為(1,0).
(1)求點B的坐標;
(2)求該拋物線的解析式;
(3)求四邊形BDEC的面積S;
(4)在x軸上是否存在點P,使得以點P、B、C為頂點的三角形是直角三角形?若存在,直接寫出點P的坐標;若不存在,請說明理由.
【考點】二次函數(shù)綜合題.
【分析】(1)在一次函數(shù)y=中,令x=0,即可求出點B的坐標;
(2)將點B、D的坐標代入二次函數(shù)解析式,求出b、c的值,即可求出二次函數(shù)的解析式;
(3)兩解析式聯(lián)立方程求得B、C的坐標,令y=x2﹣x+1=0,求得D、E的坐標,然后根據(jù)梯形和三角形的面積公式求得即可;
(4)設P(x,0),求得PB2=x2+1,PC2=(x﹣4)2+9,BC2=42+(3﹣1)2=20,然后分三種情況分別討論求得即可.
【解答】解:(1)∵一次函數(shù)y=與y軸的交點為B,
令x=0,可得y=1,
∴B(0,1);
(2)將B(0,1),D(1,0)的坐標代入y=x2+bx+c得,
,
解得:,
∴解析式為:y=x2﹣x+1;
(3)∵二次函數(shù)的圖象與一次函數(shù)的圖象交于B、C兩點,
∴,
解得:,,
∴C(4,3),
解x2﹣x+1=0,得x=1和x=2,
∴D(1,0),E(2,0),
∴S=(1+3)×4﹣×1×1﹣(4﹣2)×3=4.5;
(4)設P(x,0),
∵B(0,1),C(4,3),
∴PB2=x2+1,PC2=(x﹣4)2+9,BC2=42+(3﹣1)2=20,
①當∠PBC=90°時,則PB2+BC2=PC2,
即x2+1+20=(x﹣4)2+9,
解得x=,
∴P1(,0);
②當∠PCB=90°時,則PC2+BC2=PB2,
即x2+1=(x﹣4)2+9+20,
解得x=,
∴P2(,0);
③當∠BPC=90°時,則PB2+PC2=BC2,
即x2+1+(x﹣4)2+9=20,
解得x=1或x=3,
∴P3(1,0),P4(3,0);
∴在x軸上存在點P,使得以點P、B、C為頂點的三角形是直角三角形,點P的坐標為(,0)或(,0)或(1,0)或(3,0).
【點評】本題是二次函數(shù)的綜合題,涉及了利用待定系數(shù)法求二次函數(shù)的解析式、函數(shù)圖象交點坐標、四邊形的面積以及勾股定理的應用等知識,難度適中.
科目:初中數(shù)學 來源: 題型:
如圖,在△ABC中,AD,CE是高線,AF是角平分線,∠BAC=∠AFD=80°.
(1)求∠BCE的度數(shù);
(2)如果AD=6,BE=5.求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com