【題目】如圖,在△ABC中,點(diǎn)D是AB的中點(diǎn),點(diǎn)F是BC延長(zhǎng)線上一點(diǎn),連接DF,交AC于點(diǎn)E,連接BE,∠A=∠ABE.
(1)求證:DF是線段AB的垂直平分線;
(2)當(dāng)AB=AC,∠A=46°時(shí),求∠EBC及∠F的度數(shù).
【答案】(1)見(jiàn)解析;(2)∠EBC =21°,∠F=23°.
【解析】試題分析:(1)、根據(jù)題意得出AE=BE,然后結(jié)合AD=BD得出答案;(2)、根據(jù)等腰三角形的性質(zhì)得出∠ABC=∠ACB=67°,根據(jù)∠EBC=∠ABC﹣∠ABE和∠F=90°﹣∠ABC得出角度.
試題解析:(1)、證明:∵∠A=∠ABE, ∴EA=EB, ∵AD=DB,
∴DF是線段AB的垂直平分線;
(2)、解:∵∠A=46°, ∴∠ABE=∠A=46°, ∵AB=AC, ∴∠ABC=∠ACB=67°,
∴∠EBC=∠ABC﹣∠ABE=21°, ∠F=90°﹣∠ABC=23°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)y=(3-k)x-2k2+18.
(1)k為何值時(shí),它的圖象經(jīng)過(guò)原點(diǎn)?
(2)k為何值時(shí),圖象經(jīng)過(guò)點(diǎn)(0,-2)?
(3)k為何值時(shí),y隨x的增大而減小?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AE平分∠BAC交⊙O于點(diǎn)E,交BC于點(diǎn)D,過(guò)點(diǎn)E做直線l∥BC.
(1)判斷直線l與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若∠ABC的平分線BF交AD于點(diǎn)F,求證:BE=EF;
(3)在(2)的條件下,若DE=4,DF=3,求AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】24.在矩形ABCD中,將點(diǎn)A翻折到對(duì)角線BD上的點(diǎn)M處,折痕BE交AD于點(diǎn)E.將點(diǎn)C翻折到對(duì)角線BD上的點(diǎn)N處,折痕DF交BC于點(diǎn)F.
(1)求證:四邊形BFDE為平行四邊形;
(2)若四邊形BFDE為菱形,且AB=2,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D、E分別是邊BC、AC的中點(diǎn),過(guò)點(diǎn)A作AF∥BC交DE的延長(zhǎng)線于F點(diǎn),連接AD、CF.
(1)求證:四邊形ADCF是平行四邊形;
(2)當(dāng)△ABC滿(mǎn)足什么條件時(shí),四邊形ADCF是正方形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有長(zhǎng)為l的籬笆,利用它和房屋的一面墻圍成如圖形狀的園子,園子的寬為t.
(1)用關(guān)于l,t的代數(shù)式表示園子的面積;這個(gè)代數(shù)式是多項(xiàng)式還是單項(xiàng)式?
(2)若l=100固定不變,若t的值取20,25,30時(shí),則哪一種取法所圍成的園子面積最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某氣球內(nèi)充滿(mǎn)一定質(zhì)量的氣體,當(dāng)溫度不變時(shí),氣球內(nèi)氣體的氣壓p(kPa)是氣體體積V(m3)的反比例函數(shù),其圖象如圖所示.
(1)寫(xiě)出這一函數(shù)的表達(dá)式.
(2)當(dāng)氣體體積為1 m3時(shí),氣壓是多少?
(3)當(dāng)氣球內(nèi)的氣壓大于140 kPa時(shí),氣球?qū)⒈?/span>,為了安全考慮,氣體的體積應(yīng)不小于多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】商場(chǎng)某種商品平均每天可銷(xiāo)售30件,每件盈利50元。為了盡快減少庫(kù)存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施。經(jīng)調(diào)查發(fā)現(xiàn),每件商品每降價(jià)1元,商場(chǎng)平均每天可多售出2件。設(shè)每件商品降價(jià)元。據(jù)此規(guī)律,請(qǐng)回答:
(1)商場(chǎng)日銷(xiāo)售量增加_____件,每件商品盈利_____元(用含的代數(shù)式表示)。
(2)在上述條件不變、銷(xiāo)售正常情況下,每件商品降價(jià)多少元時(shí),商場(chǎng)日盈利可達(dá)到2100元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】仔細(xì)觀察下列等式:
第1個(gè):22﹣1=1×3
第2個(gè):32﹣1=2×4
第3個(gè):42﹣1=3×5
第4個(gè):52﹣1=4×6
第5個(gè):62﹣1=5×7
…
這些等式反映出自然數(shù)間的某種運(yùn)算規(guī)律.按要求解答下列問(wèn)題:
(1)請(qǐng)你寫(xiě)出第6個(gè)等式: ;
(2)設(shè)n(n≥1)表示自然數(shù),則第n個(gè)等式可表示為 ;
(3)運(yùn)用上述結(jié)論,計(jì)算:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com