【題目】為了改善市民的生活環(huán)境,我是在某河濱空地處修建一個(gè)如圖所示的休閑文化廣場(chǎng).在RtABC內(nèi)修建矩形水池DEFG,使頂點(diǎn)D、E在斜邊AB上,F、G分別在直角邊BC、AC上;又分別以AB、BC、AC為直徑作半圓,它們交出兩彎新月(圖中陰影部分),兩彎新月部分栽植花草;其余空地鋪設(shè)地磚.其中,BAC=600.設(shè)EF=x米,DE=y米.

(1)求yx之間的函數(shù)解析式;

(2)當(dāng)x為何值時(shí),矩形DEFG的面積最大?最大面積是多少?

(3)求兩彎新月(圖中陰影部分)的面積,并求當(dāng)x為何值時(shí),矩形DEFG的面積等于兩彎新月面積的?

【答案】(1)(0<x<8)(2)(3)米時(shí)

【解析】解:(1)在RtABC中,由題意得AC=米,BC=36米,ABC=300,

AB=。

AD+DE+BE=AB,DE=AB-AD-BE。

(0<x<8)。

(2)矩形DEFG的面積,

當(dāng)x=9時(shí),矩形DEFG的面積最大,最大面積為平方米。

(3)記AC為直徑的半圓、BC為直徑的半圓、AB為直徑的半圓面積分別為S1、S2、S3,兩彎新月面積為S,則

由AC2+BC2=AB2可知S1+S2=S3,。故S=SABC

兩彎新月的面積S=(平方米)。

,解得,符合題意。

當(dāng)米時(shí),矩形DEFG的面積等于兩彎新月面積的。

(1)應(yīng)用銳角三角函數(shù),將AD,BE用x來表示,由DE=AB-AD-BE列式即得y與x之間的函數(shù)解析式。

(2)求出矩形DEFG面積的函數(shù)表達(dá)式,應(yīng)用二次函數(shù)最值原理求解即可。

(3)應(yīng)用轉(zhuǎn)換思想,由S兩彎新月=SABC,根據(jù)矩形DEFG的面積等于兩彎新月面積的列方程求解即可。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在暑期社會(huì)實(shí)踐活動(dòng)中,以每千克0.8元的價(jià)格從批發(fā)市場(chǎng)購(gòu)進(jìn)若干千克西瓜到市場(chǎng)上去銷售,在銷售了40千克西瓜之后,余下的每千克降價(jià)0.4元,全部售完.銷售金額與售出西瓜的千克數(shù)之間的關(guān)系如圖所示.請(qǐng)你根據(jù)圖象提供的信息完成以下問題:

(1)求降價(jià)前銷售金額y()與售出西瓜x(千克)之間的函數(shù)關(guān)系式.

(2)小明從批發(fā)市場(chǎng)共購(gòu)進(jìn)多少千克西瓜?

(3)小明這次賣瓜賺了多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以O(shè)為圓心的兩個(gè)同心圓中,小圓的弦AB的延長(zhǎng)線交大圓于點(diǎn)C,若AB=3,BC=1,則與圓環(huán)的面積最接近的整數(shù)是( )

A. 9 B. 10 C. 15 D. 13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】PABC內(nèi)一點(diǎn),∠PBC30°,∠PBA,且∠PAB=∠PAC22°,則∠APC的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,過A(-1,0)、B(3,0)兩點(diǎn)的拋物線交y軸于點(diǎn)C,其頂點(diǎn)為點(diǎn)D,設(shè)△ACD的面積為S1,△ABC的面積為S2.小芳經(jīng)探究發(fā)現(xiàn):S1︰S2是一個(gè)定值.這個(gè)定值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知: 平分, 垂直平分, ,垂足分別是點(diǎn).求證(1) ;(2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在△ABC中,∠C90°AC3,BC4,分別以AC、BCAB為直徑作半圓,如圖所示,則陰影部分的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果商場(chǎng)經(jīng)銷一種高檔水果,如果每千克盈利元,每天可售出千克.經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),出售價(jià)格每降低元,日銷售量將增加千克.那么每千克應(yīng)降價(jià)多少元,銷售該水果每天可獲得最大利潤(rùn)?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一張邊長(zhǎng)為2的正方形紙片ABCD對(duì)折,設(shè)折痕為EF(如圖);再沿過點(diǎn)D的折痕將A翻折,使得點(diǎn)A落在EF上的點(diǎn)H處(如圖),折痕交AE于點(diǎn)G,則EG的長(zhǎng)度是___________.

查看答案和解析>>

同步練習(xí)冊(cè)答案