【題目】已知關(guān)于 x 的函數(shù) y=(m﹣1)x2+2x+m 圖象與坐標(biāo)軸只有 2 個(gè)交點(diǎn),則m=_______

【答案】1 或 0 或

【解析】

分兩種情況討論:當(dāng)函數(shù)為一次函數(shù)時(shí),必與坐標(biāo)軸有兩個(gè)交點(diǎn);
當(dāng)函數(shù)為二次函數(shù)時(shí),將(0,0)代入解析式即可求出m的值.

解:(1)當(dāng) m﹣1=0 時(shí),m=1,函數(shù)為一次函數(shù),解析式為 y=2x+1,與 x

交點(diǎn)坐標(biāo)為(﹣ ,0);與 y 軸交點(diǎn)坐標(biāo)(0,1).符合題意.

2)當(dāng) m﹣1≠0 時(shí),m≠1,函數(shù)為二次函數(shù),與坐標(biāo)軸有兩個(gè)交點(diǎn),則過原點(diǎn),且與 x 軸有兩個(gè)不同的交點(diǎn),

于是△=4﹣4(m﹣1)m>0,

解得,(m﹣2

解得 m< m>

將(0,0)代入解析式得,m=0,符合題意.

3)函數(shù)為二次函數(shù)時(shí),還有一種情況是:與 x 軸只有一個(gè)交點(diǎn),與 Y 軸交于交于另一點(diǎn),

這時(shí):△=4﹣4(m﹣1)m=0,

解得:m=

故答案為:1 0

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)解方程x2﹣4x=12;

(2)如圖,△ABP是由△ACEA點(diǎn)旋轉(zhuǎn)得到的,若∠APB=110°,∠B=30°,∠PAC=20°,求旋轉(zhuǎn)角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,O是ABC的外接圓,連接AO,若∠BAC+∠OAB=90°.

(1)求證:

(2)如圖2,作CDAB交于D,AO的延長(zhǎng)線交CD于E,若AO=3,AE=4,求線段AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)xOy中,點(diǎn)A(1,0),B(2,0),正六邊形ABCDEF沿x軸正方向無滑動(dòng)滾動(dòng),每旋轉(zhuǎn)60°為滾動(dòng)1次,那么當(dāng)正六邊形ABCDEF滾動(dòng)2017次時(shí),點(diǎn)F的坐標(biāo)是__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P為反比例函數(shù)(x<0)在第三象限內(nèi)圖象上的一點(diǎn),過點(diǎn)P分別作x軸、y軸的垂線交一次函數(shù)y=-x+4的圖像于點(diǎn)A、B.AO、BO分別平分∠BAP,∠ABP ,則k的值為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知矩形AOCB,AB6cmBC16cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以3cm/s的速度向點(diǎn)O運(yùn)動(dòng),直到點(diǎn)O為止;動(dòng)點(diǎn)Q同時(shí)從點(diǎn)C出發(fā),以2cm/s的速度向點(diǎn)B運(yùn)動(dòng),與點(diǎn)P同時(shí)結(jié)束運(yùn)動(dòng).

(1)當(dāng)出發(fā)   時(shí),點(diǎn)P和點(diǎn)Q之間的距離是10cm;

(2)逆向發(fā)散:當(dāng)運(yùn)動(dòng)時(shí)間為2s時(shí),PQ兩點(diǎn)的距離為   cm;當(dāng)運(yùn)動(dòng)時(shí)間為4s時(shí),P、Q兩點(diǎn)的距離為   cm;

(3)探索發(fā)現(xiàn):如圖2,以點(diǎn)O為坐標(biāo)原點(diǎn),OC所在直線為x軸,OA所在直線為y軸,1cm長(zhǎng)為單位長(zhǎng)度建立平面直角坐標(biāo)系,連接AC,與PQ相交于點(diǎn)D,若雙曲線y過點(diǎn)D,問k的值是否會(huì)變化?若會(huì)變化,說明理由;若不會(huì)變化,請(qǐng)求出k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】雅安地震牽動(dòng)著全國(guó)人民的心,某單位開展了“一方有難,八方支援”賑災(zāi)捐款活動(dòng).第一天收到捐款10 000元,第三天收到捐款12 100元.

(1)如果第二天、第三天收到捐款的增長(zhǎng)率相同,求捐款增長(zhǎng)率;

(2)按照(1)中收到捐款的增長(zhǎng)速度,第四天該單位能收到多少捐款?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),△ABC,AB=BC,PAB邊上一點(diǎn),連接CP,PA、PC為鄰邊作APCD,ACPD相交于點(diǎn)E,已知∠ABC=∠AEP=(0°<<90°).

(1)求證: ∠EAP=∠EPA;

(2)APCD是否為矩形?請(qǐng)說明理由;

(3)如圖(2),FBC中點(diǎn),連接FP,∠AEP繞點(diǎn)E順時(shí)針旋轉(zhuǎn)適當(dāng)?shù)慕嵌?/span>,得到∠MEN(點(diǎn)M、N分別是∠MEN的兩邊與BA、FP延長(zhǎng)線的交點(diǎn)).猜想線段EMEN之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ABC=90°,延長(zhǎng)ABE,使AE=AC,過EEFACFEFBCG

1)求證:BE=CF;

2)若∠E=40°,求∠AGB的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案