【題目】某水果店銷售某中水果,由歷年市場行情可知,從第1月至第12月,這種水果每千克售價y1(元)與銷售時間第x月之間存在如圖1(一條線段)的變化趨勢,每千克成本y2(元)與銷售時間第x月滿足函數(shù)關(guān)系式y2=mx2﹣8mx+n,其變化趨勢如圖2.
(1)求y2的解析式;
(2)第幾月銷售這種水果,每千克所獲得利潤最大?最大利潤是多少?
【答案】(1) y2=x2﹣x+(1≤x≤12);(2) 第3月銷售這種水果,每千克所獲得利潤最大,最大利潤是元/千克.
【解析】
試題(1)把函數(shù)圖象經(jīng)過的點(3,6),(7,7)代入函數(shù)解析式,解方程組求出m、n的值,即可得解;
(2)根據(jù)圖1求出每千克的售價y1與x的函數(shù)關(guān)系式,然后根據(jù)利潤=售價﹣成本得到利潤與x的函數(shù)關(guān)系式,然后整理成頂點式形式,再根據(jù)二次函數(shù)的最值問題解答即可.
試題解析:(1)由圖可知,y2=mx2﹣8mx+n經(jīng)過點(3,6),(7,7),
∴,
解得.
∴y2=x2﹣x+(1≤x≤12);
(2)設(shè)y1=kx+b(k≠0),
由圖可知,函數(shù)圖象經(jīng)過點(4,11),(8,10),
則,
解得,
所以,y1=﹣x+12,
所以,每千克所獲得利潤=(﹣x+12)﹣(x2﹣x+)
=﹣x+12﹣x2+x﹣
=﹣x2+x+
=﹣(x2﹣6x+9)++
=﹣(x﹣3)2+,
∵﹣<0,
∴當(dāng)x=3時,所獲得利潤最大,為元.
答:第3月銷售這種水果,每千克所獲得利潤最大,最大利潤是元/千克.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)運動隊有短跑、長跑、跳遠、實心球四個訓(xùn)練小隊,現(xiàn)將四個訓(xùn)練小隊隊員情況繪制成如下不完整的統(tǒng)計圖:
(l)學(xué)校運動隊的隊員總?cè)藬?shù)為 人,扇形統(tǒng)計圖中短跑訓(xùn)練小隊所對應(yīng)圓心角的度數(shù)為 ;
(2)補全條形統(tǒng)計圖,并標(biāo)明數(shù)據(jù);
(3)若在短跑訓(xùn)練小組中隨機選取2名同學(xué)進行比賽,請用列舉法(畫樹狀圖或列表)求所選取的這兩名同學(xué)恰好是一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線l:y=ax2+bx+c(a,b,c均不為0)的頂點為M,與y軸的交點為N,我們稱以N為頂點,對稱軸是y軸且過點M的拋物線為拋物線l的衍生拋物線,直線MN為拋物線l的衍生直線.
(1)如圖,拋物線y=x2﹣2x﹣3的衍生拋物線的解析式是 ,衍生直線的解析式是 ;
(2)若一條拋物線的衍生拋物線和衍生直線分別是y=﹣2x2+1和y=﹣2x+1,求這條拋物線的解析式;
(3)如圖,設(shè)(1)中的拋物線y=x2﹣2x﹣3的頂點為M,與y軸交點為N,將它的衍生直線MN先繞點N旋轉(zhuǎn)到與x軸平行,再沿y軸向上平移1個單位得直線n,P是直線n上的動點,是否存在點P,使△POM為直角三角形?若存在,求出所有點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校課程中心為了了解學(xué)生對開設(shè)的3D打印、木工制作、機器人和電腦編程四門課程的喜愛程度,隨機調(diào)查了部分學(xué)生,每人只能選一項最喜愛的課程.圖①是四門課程最喜愛人數(shù)的扇形統(tǒng)計圖,圖②是四門課程男、女生最喜愛人數(shù)的條形統(tǒng)計圖.
(1)求圖①中的值,補全圖②中的條形統(tǒng)計圖,標(biāo)上相應(yīng)的人數(shù);
(2)若該校共有1800名學(xué)生,則該校最喜愛3D打印課程的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某課桌生產(chǎn)廠家研究發(fā)現(xiàn),傾斜12°~24°的桌面有利于學(xué)生保持軀體自然姿勢.根據(jù)這一研究,廠家決定將水平桌面做成可調(diào)節(jié)角度的桌面.新桌面的設(shè)計圖如圖1,AB可繞點A旋轉(zhuǎn),在點C處安裝一根可旋轉(zhuǎn)的支撐臂CD,AC=30 cm.
(1)如圖2,當(dāng)∠BAC=24°時,CD⊥AB,求支撐臂CD的長;
(2)如圖3,當(dāng)∠BAC=12°時,求AD的長.(結(jié)果保留根號)
(參考數(shù)據(jù):sin 24°≈0.40,cos 24°≈0.91,tan 24°≈0.46,sin 12°≈0.20)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖示二次函數(shù)y=ax2+bx+c的對稱軸在y軸的右側(cè),其圖象與x軸交于點A(﹣1,0)與點C(x2,0),且與y軸交于點B(0,﹣2),小強得到以下結(jié)論:①0<a<2;②﹣1<b<0;③c=﹣1;④當(dāng)|a|=|b|時x2>﹣1;以上結(jié)論中正確結(jié)論的序號為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次測量活動中,同學(xué)們要測量某公園的碼頭A與他正東方向的亭子B之間的距離,如圖他們選擇了與碼頭A、亭子B在同一水平面上的點P在點P處測得碼頭A位于點P北偏西方向30°方向,亭子B位于點P北偏東43°方向;又測得P與碼頭A之間的距離為200米,請你運用以上數(shù)據(jù)求出A與B的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在信息快速發(fā)展的社會,“信息消費”已成為人們生活的重要組成部分.某高校組織課外小組在鄭州市的一個社區(qū)隨機抽取部分家庭,調(diào)查每月用于信息消費的金額,根據(jù)數(shù)據(jù)整理成如圖所示的不完整統(tǒng)計表和統(tǒng)計圖.已知A,B兩組戶數(shù)頻數(shù)直方圖的高度比為1:5.
月信息消費額分組統(tǒng)計表
組別 | 消費額(元) |
A | 10≤x<100 |
B | 100≤x<200 |
C | 20≤x<300 |
D | 300≤x<400 |
E | x≥400 |
請結(jié)合圖表中相關(guān)數(shù)據(jù)解答下列問題:
(1)這次接受調(diào)查的有 戶;
(2)在扇形統(tǒng)計圖中,“E”所對應(yīng)的圓心角的度數(shù)是 ;
(3)請你補全頻數(shù)直方圖;
(4)若該社區(qū)有2000戶住戶,請估計月信息消費額不少于200元的戶數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘海輪位于燈塔P的北偏東53°方向,距離燈塔100海里的A處,它沿正南方向航行一段時間后,到達位于燈塔P的南偏東45°方向上的B處.
(1)在圖中畫出點B,并求出B處與燈塔P的距離(結(jié)果取整數(shù));
(2)用方向和距離描述燈塔P相對于B處的位置.
(參考數(shù)據(jù):sin 53°≈0.80,cos 53°≈0.60,tan53°≈1.33, ≈1.41)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com