【題目】計算:|﹣2|﹣2cos60°+( 1﹣(π﹣ 0

【答案】解:|﹣2|﹣2cos60°+( 1﹣(π﹣ 0

=2﹣2× +6﹣1

=6


【解析】根據(jù)實數(shù)的運算,零指數(shù)冪,負整數(shù)指數(shù)冪和特殊的三角 函數(shù)數(shù)值進行計算即可到所求結(jié)論.
【考點精析】通過靈活運用零指數(shù)冪法則和整數(shù)指數(shù)冪的運算性質(zhì),掌握零次冪和負整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù))即可以解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是小明家和學校所在地的簡單地圖,已知,,,點COP的中點,回答下列問題:

1)圖中到小明家距離相同的是哪些地方?

2)由圖可知,公園在小明家東偏南30°方向2km處.請用方向與距離描述學校、商場、停車場相對于小明家的位置.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ABC=90°AB=8,BC=6,點DAC邊上的動點,點D從點C出發(fā),沿邊CAA運動,當運動到點A時停止,若設點D運動的時間為t秒,點D運動的速度為每秒1個單位長度

1)當t=2時,CD=______,AD=______;(請直接寫出答案)

2)當CBD是直角三角形時,t=______;(請直接寫出答案)

3)求當t為何值時,CBD是等腰三角形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形OABC的邊長為2,頂點A,C分別在x軸,y軸的正半軸上,E點是BC的中點,F(xiàn)是AB延長線上一點且FB=1.

(1)求經(jīng)過點O,A,E三點的拋物線解析式;
(2)點P在拋物線上運動,當點P運動到什么位置時△OAP的面積為2,請求出點P的坐標;
(3)在拋物線上是否存在一點Q,使△AFQ是等腰直角三角形?若存在直接寫出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,正方形ABCO的對角線BOx 軸上,若正方形ABCO的邊長為,點Bx負半軸上,反比例函數(shù)的圖象經(jīng)過C點.

1)求該反比例函數(shù)的解析式;

2)當函數(shù)值-2時,請直接寫出自變量x的取值范圍;

3)若點P是反比例函數(shù)上的一點,且PBO的面積恰好等于正方形ABCO的面積,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,長方形的兩邊長分別為m+1,m+7;如圖②,長方形的兩邊長分別為m+2m+4(其中m為正整數(shù))

(1) 圖①中長方形的面積=_______________

圖②中長方形的面積=_______________

比較:______(、”)

(2) 現(xiàn)有一正方形,其周長與圖①中的長方形周長相等,

①求正方形的邊長(用含m的代數(shù)式表示)

②試說明:該正方形面積與圖①中長方形面積的差(-)是定值.

(3) (1)的條件下,若某個圖形的面積介于、之間(不包括)并且面積為整數(shù),這樣的整數(shù)值有且只有20個,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在整式乘法的學習中,我們采用了構(gòu)造幾何圖形的方法研究代數(shù)式的變形問題,借助直觀、形象的幾何圖形,加深對整式乘法的認識和理解,感悟代數(shù)與幾何的內(nèi)在聯(lián)系,現(xiàn)有邊長分別為,的正方形Ⅰ號和Ⅱ號,以及長為,寬為的長方形Ⅲ號,卡片足夠多,我們可以選取適量的卡片拼接成幾何圖形.(卡片間不重疊、無縫隙)

根據(jù)已有的學習經(jīng)驗,解決下列問題:

1)圖1是由1張Ⅰ號卡片、1張Ⅱ號卡片、2張Ⅲ號卡片拼接成的正方形,那么這個幾何圖形表示的等式是______;

2)小聰想用幾何圖形表示等式,圖2給出了他所拼接的幾何圖形的一部分,請你補全圖形;

3)小聰選取2張Ⅰ號卡片、2張Ⅱ號卡片、5張Ⅲ號卡片拼接成一個長方形,請你畫出拼接后的長方形,并直接寫出幾何圖形表示的等式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC 關于直線 PQ 對稱,關于直線 MN對稱.

1)用無刻度直尺畫出直線MN

2)直線 MN PQ 相交于點 O,試探究∠AOA2 與直線 MNPQ 所夾銳角α的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y2x+6x軸于A,交y軸于B

1)直接寫出A      ),B   ,   );

2)如圖1,點E為直線yx+2上一點,點F為直線yx上一點,若以AB,EF為頂點的四邊形是平行四邊形,求點EF的坐標

3)如圖2,點Cmn)為線段AB上一動點,D(﹣7m,0)在x軸上,連接CD,點MCD的中點,求點M的縱坐標y和橫坐標x之間的函數(shù)關系式,并直接寫出在點C移動過程中點M的運動路徑長.

查看答案和解析>>

同步練習冊答案