【題目】如圖,直線y=2x+6交x軸于A,交y軸于B.
(1)直接寫出A( , ),B( , );
(2)如圖1,點E為直線y=x+2上一點,點F為直線y=x上一點,若以A,B,E,F為頂點的四邊形是平行四邊形,求點E,F的坐標
(3)如圖2,點C(m,n)為線段AB上一動點,D(﹣7m,0)在x軸上,連接CD,點M為CD的中點,求點M的縱坐標y和橫坐標x之間的函數(shù)關(guān)系式,并直接寫出在點C移動過程中點M的運動路徑長.
【答案】(1)﹣3,0,0,6;(2)E(5,7),F(2,1)或E(11,13),F(﹣14,﹣7);(3).
【解析】
(1)利用待定系數(shù)法即可解決問題;
(2)因為A,B,E,F為頂點的四邊形是平行四邊形,推出AB=EF,AB∥EF,設(shè)E(m,m+2),則F(m+3,m+8)或(m﹣3,m﹣4),再利用待定系數(shù)法求出m即可;
(3)求出點M的坐標(用m表示),即可解決問題,利用特殊位置求出點M的坐標,可以解決點C移動過程中點M的運動路徑長;
解:(1)對于直線y=2x+6,令x=0,得到y=6,
令y=0,得到x=﹣3,
∴A(﹣3,0),B(0,6),
故答案為﹣3,0,0,6;
(2)∵A,B,E,F為頂點的四邊形是平行四邊形,
∴AB=EF,AB∥EF,設(shè)E(m,m+2),則F(m+3,m+8)或(m﹣3,m﹣4),
把F(m+3,m+8)代入y=x,得到m+8=(m+3),解得m=﹣13,
∴E(﹣13,﹣11),F(﹣10,﹣5),
把F(m﹣3,m﹣4)代入y=x中,m﹣4=(m﹣3),解得m=5,
∴E(5,7),F(2,1),
當AB為對角線時,設(shè)E(m,m+2),則F(m﹣3,6﹣m),
把F(﹣m﹣3,4﹣m)代入y=x中,4﹣m=(﹣m﹣3),解得m=11,
∴E(11,13),F(﹣14,﹣7).
(3)∵C(m,n)在直線y=2x+6上,
∴n=2m+6,
∴C(m,2m+6),
∵D(﹣7m,0),CM=MD,
∴M(﹣3m,m+3),
令x=﹣3m,y=m+3,
∴y=﹣x+3,
當點C與A重合時,m=﹣3,可得M(9,0),
當點C與B重合時,m=0,可得M(0,3),
∴點C移動過程中點M的運動路徑長為:.
科目:初中數(shù)學 來源: 題型:
【題目】操作探究:已知在紙面上有一數(shù)軸(如圖所示),
(1)折疊紙面,使表示的點1與-1重合,則-2表示的點與 表示的點重合;
(2)折疊紙面,使-1表示的點與3表示的點重合,回答以下問題:
① 5表示的點與數(shù) 表示的點重合;
②表示的點與數(shù) 表示的點重合;
③若數(shù)軸上A、B兩點之間距離為9(A在B的左側(cè)),且A、B兩點經(jīng)折疊后重合,此時點A表示的數(shù)是 、點B表示的數(shù)是 .
(3)已知在數(shù)軸上點A表示的數(shù)是a,點A移動4個單位,此時點A表示的數(shù)和a是互為相反數(shù),求a的值。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖, 是⊙ 的直徑, 是⊙ 的弦,過點 的切線交 的延長線于點 ,且 .
(1)求 的度數(shù);
(2)若 =3,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AF平分∠BAD交BC于E,交DC延長線于F,點G為EF的中點,連結(jié)DG.
(1)求證:BC=DF;
(2)連BD,求BD:DG的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】等腰直角△ABC中,BC=AC,∠ACB=90°,將該三角形在直角坐標系中放置.
(1)如圖(1),過點A作AD⊥x軸,當B點為(0,1),C點為(3,0)時,求OD的長;
(2)如圖(2),將斜邊頂點A、B分別落在y軸上、x軸上,若A點為(0,1),B點為(4,0),求C點坐標;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A(﹣4,﹣1),B(﹣5,﹣4),C(﹣1,﹣3),△ABC經(jīng)過平移得到的△A′B′C′,△ABC中任意一點P(x1,y1)平移后的對應點為P′(x1+6,y1+4).
(1)請在圖中作出△A′B′C′;
(2)寫出點A′、B′、C′的坐標;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC在平面直角坐標系內(nèi),頂點的坐標分別為A(﹣1,5),B(﹣4,1),C(﹣1,1)將△ABC繞點A逆時針旋轉(zhuǎn)90°,得到△AB′C′,點B,C的對應點分別為點B′,C′,
(1)畫出△AB′C′;
(2)寫出點B′,C′的坐標;
(3)求出在△ABC旋轉(zhuǎn)的過程中,點C經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中, BD是∠ABC的平分線,過點C作CE⊥BD,交 BD的延長線于點E,∠ABC=60°,∠ECD=15°.
(1)直接寫出∠ADB的度數(shù)是_______;
(2)求證:BD=AB;
(3)若AB=2,求BC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com