【題目】在平面直角坐標(biāo)系中,對(duì)于某點(diǎn)不是原點(diǎn)),稱以點(diǎn)為圓心,長(zhǎng)為半徑的圓為點(diǎn)的半長(zhǎng)圓;對(duì)于點(diǎn),若將點(diǎn)的半長(zhǎng)圓繞原點(diǎn)旋轉(zhuǎn),能夠使得點(diǎn)位于點(diǎn)的半長(zhǎng)圓內(nèi)部或圓上,則稱點(diǎn)能被點(diǎn)半長(zhǎng)捕獲(或點(diǎn)能半長(zhǎng)捕獲點(diǎn)).

1)如圖,在平面直角坐標(biāo)系中,點(diǎn),則點(diǎn)的半長(zhǎng)圓的面積為__________;下列各點(diǎn)、、、,能被點(diǎn)半長(zhǎng)捕獲的點(diǎn)有__________;

2)已知點(diǎn),,①如圖,點(diǎn),當(dāng)時(shí),線段上的所有點(diǎn)均可以被點(diǎn)半長(zhǎng)捕獲,求的取值范圍;②若對(duì)于平面上的任意點(diǎn)(原點(diǎn)除外)都不能半長(zhǎng)捕獲線段上的所有點(diǎn),直接寫出的取值范圍.

【答案】1S=π,B、C兩點(diǎn);(2)①-2n6n2;(2)②t

【解析】

1)根據(jù)定義,半徑為1,直接求面積;根據(jù)被捕獲的定義,設(shè)點(diǎn)到圓心的距離為d,只需rd3r,即可以捕獲;

2)①利用rd3r這個(gè)性質(zhì),分別計(jì)算臨界點(diǎn):點(diǎn)E和點(diǎn)F能夠被捕獲的范圍,然后去公共部分即可;

2)②在上一問的基礎(chǔ)上,只需解得的不等式無公共部分,則不能捕獲

1)∵點(diǎn)

∴圓的半徑為1,面積為π

根據(jù)被捕獲的定義,設(shè)點(diǎn)到圓心的距離為d,只需rd3r,即可以捕獲

即當(dāng)1d3時(shí),點(diǎn)可被捕獲

,則d=,不符合;

d=2,符合;

,d=2,符合;

,d=,不符合

2)①∵點(diǎn)N(0,n)

∴圓的半徑為,所以只需滿足d時(shí),則可被捕獲

點(diǎn)E(1,0),則d=1,要想能夠被捕獲,則:

1

解得:nn

點(diǎn)F(1,),則d=2

同理,2

解得:nn

合并得:nn

2)②同上,圓的半徑為,所以只需滿足d時(shí),則可被捕獲

點(diǎn)E(t0),則d=t,要想能夠被捕獲,則:nn

點(diǎn)F(t),則d=,要想能夠被捕獲,則:nn

∵任意值都不能捕獲,∴得到的兩個(gè)不等式無公共部分,即:

在結(jié)合t0,解得:0t

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是“作以已知線段為斜邊的等腰直角三角形”的尺規(guī)作圖過程.

已知:線段

求作:以為斜邊的一個(gè)等腰直角三角形

作法:如圖,

(1)分別以點(diǎn)和點(diǎn)為圓心,大于的長(zhǎng)為半徑作弧,兩弧相交于兩點(diǎn);

(2)作直線,交于點(diǎn)

(3)以為圓心,的長(zhǎng)為半徑作圓,交直線于點(diǎn);

(4)連接,

即為所求作的三角形.

請(qǐng)回答:在上面的作圖過程中,①是直角三角形的依據(jù)是________;②是等腰三角形的依據(jù)是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形中,,,對(duì)角線,點(diǎn)軸上,軸平行,點(diǎn)軸上.

1)求的度數(shù).

2)點(diǎn)在對(duì)角線上,點(diǎn)在四邊形內(nèi)且在點(diǎn)的右邊,連接,已知,,設(shè)

①求的長(zhǎng)(用含的代數(shù)式表示);

②若某一反比例函數(shù)圖象同時(shí)經(jīng)過點(diǎn)、,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,點(diǎn)的中點(diǎn),點(diǎn)為對(duì)角線上的動(dòng)點(diǎn),設(shè),作于點(diǎn),連結(jié)并延長(zhǎng)至點(diǎn),使得,作點(diǎn)關(guān)于的對(duì)稱點(diǎn)于點(diǎn),連結(jié)

1)求證:

2)當(dāng)點(diǎn)運(yùn)動(dòng)到對(duì)角線的中點(diǎn)時(shí),求的周長(zhǎng);

3)在點(diǎn)的運(yùn)動(dòng)的過程中,是否可以為等腰三角形?若可以,求出的值;若不可以,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查學(xué)生對(duì)垃圾分類及投放知識(shí)的了解情況,從甲、乙兩校各隨機(jī)抽取40名學(xué)生進(jìn)行了相關(guān)知識(shí)測(cè)試,獲得了他們的成績(jī)(百分制),并對(duì)數(shù)據(jù)(成績(jī))進(jìn)行了整理、描述和分析.下面給出了部分信息.

a.甲、乙兩校40名學(xué)生成績(jī)的頻數(shù)分布統(tǒng)計(jì)表如下:

成績(jī)x

學(xué)校

4

11

13

10

2

6

3

15

14

2

(說明:成績(jī)80分及以上為優(yōu)秀,70~79分為良好,60~69分為合格,60分以下為不合格)

b.甲校成績(jī)?cè)?/span>這一組的是:

70 70 70 71 72 73 73 73 74 75 76 77 78

c.甲、乙兩校成績(jī)的平均分、中位數(shù)、眾數(shù)如下:

學(xué)校

平均分

中位數(shù)

眾數(shù)

74.2

n

5

73.5

76

84

根據(jù)以上信息,回答下列問題:

1)寫出表中n的值;

2)在此次測(cè)試中,某學(xué)生的成績(jī)是74分,在他所屬學(xué)校排在前20名,由表中數(shù)據(jù)可知該學(xué)生是_____________校的學(xué)生(填),理由是__________;

3)假設(shè)乙校800名學(xué)生都參加此次測(cè)試,估計(jì)成績(jī)優(yōu)秀的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知拋物線.

(1)求拋物線的對(duì)稱軸(用含的式子去表示)

(2)若點(diǎn),,都在拋物線上,則、的大小關(guān)系為_______;

(3)直線軸交于點(diǎn),與軸交于點(diǎn),過點(diǎn)作垂直于軸的直線與拋物線有兩個(gè)交點(diǎn),在拋物線對(duì)稱軸右側(cè)的點(diǎn)記為,當(dāng)為鈍角三角形時(shí),求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ADO的直徑,弧BA=弧BC,BDAC于點(diǎn)E,點(diǎn)FDB的延長(zhǎng)線上,且∠BAF=∠C

1)求證:AFO的切線;

2)求證:△ABE∽△DBA;

3)若BD8,BE6,求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,拋物線軸交于點(diǎn)兩點(diǎn),與軸交于點(diǎn),直線經(jīng)過點(diǎn),與拋物線另一個(gè)交點(diǎn)為,點(diǎn)是拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)作軸于點(diǎn),交直線于點(diǎn)

1)求拋物線的解析式

2)當(dāng)點(diǎn)在直線上方,且是以為腰的等腰三角形時(shí),求的坐標(biāo)

3)如圖2所示,若點(diǎn)為對(duì)稱軸右側(cè)拋物線上一點(diǎn),連接,以為直角頂點(diǎn),線段為較長(zhǎng)直角邊,構(gòu)造兩直角邊比為,是否存在點(diǎn),使點(diǎn)恰好落在直線上?若存在,請(qǐng)直接寫出相應(yīng)點(diǎn)的橫坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠CAB90°,ABAC,點(diǎn)Ay軸上,BCx軸,點(diǎn)B.將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)的△ABC′,當(dāng)點(diǎn)B′落在x軸的正半軸上時(shí),點(diǎn)C′的坐標(biāo)為( 。

A.(﹣,1B.(﹣1

C.(﹣+1D.(﹣,1

查看答案和解析>>

同步練習(xí)冊(cè)答案