【題目】Rt△ABC中,D為斜邊AB的中點,∠B=60°,BC=2cm,動點E從點A出發(fā)沿AB向點B運動,動點F從點D出發(fā),沿折線D﹣C﹣B運動,兩點的速度均為1cm/s,到達(dá)終點均停止運動,設(shè)AE的長為x,△AEF的面積為y,則yx的圖象大致為( 。

A. B.

C. D.

【答案】A

【解析】

根據(jù)題意找到臨界點,E、F分別同時到達(dá)D、C,畫出一般圖形利用銳角三角函數(shù)表示y即可.

RtABC中,D為斜邊AB的中點,∠B=60°,BC=2cm,

AD=DC=DB=2,CDB=60°,

EF兩點的速度均為1cm/s,

∴當(dāng)0≤x≤2時,y=DEDFsinCDB=x2,

當(dāng)2≤x≤4時,y=AEBFsinB=x2x,

由圖象可知A正確,

故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC在平面直角坐標(biāo)系中的位置如圖所示.將ABC向右平移6個單位長度,再向下平移6個單位長度得到A1B1C1(圖中每個小方格邊長均為1個單位長度)

(1)在圖中畫出平移后的A1B1C1;

(2)直接寫出A1B1C1各頂點的坐標(biāo).

;

3)求出ABC的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在6×8的網(wǎng)格紙中,每個小正方形的邊長都為1,動點PQ分別從點D、A同時出發(fā)向右移動,點P的運動速度為每秒2個單位,點Q的運動速度為每秒1個單位,當(dāng)點P運動到點C時,兩個點都停止運動.運動時間t _______秒時,PQB成為以PQ為腰的等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在ABC中,AB=AC,點DBC的中點,點EAD上.

1)求證:BE=CE

2)如圖2,若BE的延長線交AC于點F,且BFAC,∠BAC=45°,原題設(shè)其他條件不變.求證:AB=BF+EF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列解題過程

已知a、b、c為△ABC為三邊,且滿足a2c2b2c2a4b4,試判斷△ABC的形狀

解:∵a2c2b2c2a4b4

c2(a2b2)(a2b2)(a2b2)

c2a2b2

∴△ABC是直角三角形

回答下列問題:

(1)上述解題過程,從哪一步開始出現(xiàn)錯誤?請寫出該步的序號________

(2)錯誤原因為________

(3)本題正確結(jié)論是什么,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,△ABC在平面直角坐標(biāo)系xOy中的位置如圖所示,其中A(﹣2,3),B(﹣1,1),C0,2).

1)先作△ABC關(guān)于x軸對稱的△A1B1C1,將△A1B1C1向右平移3個單位,再作平移后的△A2B2C2;

2)寫出A2、B2、C2三點坐標(biāo);

3)在x軸上求作一點P,使PA1+PC2的值最小,并直接寫出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,.從點出發(fā),沿折線以每秒1個單位長度的速度向終點運動,點從點出發(fā)沿折線以每秒3個單位長度的速度向終點運動,、兩點同時出發(fā).分別過、兩點作.設(shè)點的運動時間為(秒).

1)當(dāng)、兩點相遇時,求的值.

2)在整個運動過程中,求的長(用含的代數(shù)式表示).

3)當(dāng)全等時,直接寫出所有滿足條件的的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠ACB=90°,AC=6cmBC=8cm.點PA點出發(fā)沿A→C→B路徑向終點運動,終點為B點;點QB點出發(fā)沿B→C→A路徑向終點運動,終點為A點.點PQ分別以每秒1cm3cm的運動速度同時開始運動,當(dāng)一個點到達(dá)終點時另一個點也停止運動,在某時刻,分別過PQPElE,QFlF.設(shè)運動時間為t秒,則當(dāng)t=______秒時,PECQFC全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,二次函數(shù)yax22ax3aa0)的圖象與x軸交于A、B兩點(點A在點B的右側(cè)),與y軸的正半軸交于點C,頂點為D

1)求頂點D的坐標(biāo)(用含a的代數(shù)式表示);

2)若以AD為直徑的圓經(jīng)過點C

①求拋物線的函數(shù)關(guān)系式;

②如圖2,點Ey軸負(fù)半軸上一點,連接BE,將△OBE繞平面內(nèi)某一點旋轉(zhuǎn)180°,得到△PMN(點P、MN分別和點O、B、E對應(yīng)),并且點M、N都在拋物線上,作MFx軸于點F,若線段MFBF12,求點MN的坐標(biāo);

③點Q在拋物線的對稱軸上,以Q為圓心的圓過A、B兩點,并且和直線CD相切,如圖3,求點Q的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案