【題目】已知,△ABC在平面直角坐標系xOy中的位置如圖所示,其中A(﹣2,3),B(﹣11),C0,2).

1)先作△ABC關于x軸對稱的△A1B1C1,將△A1B1C1向右平移3個單位,再作平移后的△A2B2C2;

2)寫出A2、B2、C2三點坐標;

3)在x軸上求作一點P,使PA1+PC2的值最小,并直接寫出點P的坐標.

【答案】(1)答案見詳解作圖,(2A2 (1,-3),B2 (2,-1)C2 (3-2),(3(10)

【解析】

1)直接利用關于x軸對稱點的性質得出對應點位置進而得出答案,再利用平移的性質得出答案;

2)直接利用平移的性質得出對應點坐標;

3)利用軸對稱的性質以及求最短路線的方法得出答案.

1)如圖所示:A1B1C1,A2B2C2,即為所求;

2)如圖所示:A21,-3),B22-1),C23,-2);

3)如圖所示:使PA1+PC2的值最小,則點P的坐標為:(1,0).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某校為學生裝一臺直飲水器,課間學生到直飲水器打水.他們先同時打開全部的水籠頭放水,后來又關閉了部分水籠頭.假設前后兩人接水間隔時間忽略不計,且不發(fā)生潑灑,直飲水器的余水量(升)與接水時間(分)的函數(shù)圖象如圖,請結合圖象回答下列問題:

1)求當時,之間的函數(shù)關系式;

2)假定每人水杯接水0.7升,要使40名學生接水完畢,課間10分鐘是否夠用?請計算回答.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】樂樂根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y=|x-1|的圖象與性質進行了研究,下面是樂樂的研究過程,請補充完成:

(1)函數(shù)y=|x-1|的自變量x的取值范圍是 .

(2)列表,找出yx的幾組對應值.

x

-1

0

1

2

3

y

b

1

0

1

2

(3)在平面直角坐標系xOy中,描出以上表中各對對應值為坐標的點,并畫出該函數(shù)的圖象.

(4)①函數(shù)的最小值為 ;

②寫出一條該函數(shù)的其它性質: .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4,BC=3,點O為對角線BD的中點,點P從點A出發(fā),沿折線AD﹣DO﹣OC以每秒1個單位長度的速度向終點C運動,當點P與點A不重合時,過點P作PQ⊥AB于點Q,以PQ為邊向右作正方形PQMN,設正方形PQMN與△ABD重疊部分圖形的面積為S(平方單位),點P運動的時間為t(秒).

(1)求點N落在BD上時t的值;

(2)直接寫出點O在正方形PQMN內(nèi)部時t的取值范圍;

(3)當點P在折線AD﹣DO上運動時,求S與t之間的函數(shù)關系式;

(4)直接寫出直線DN平分△BCD面積時t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】Rt△ABC中,D為斜邊AB的中點,∠B=60°,BC=2cm,動點E從點A出發(fā)沿AB向點B運動,動點F從點D出發(fā),沿折線D﹣C﹣B運動,兩點的速度均為1cm/s,到達終點均停止運動,設AE的長為x,△AEF的面積為y,則yx的圖象大致為(  )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,△ABC是等邊三角形,D是邊BC上的任意一點,∠ADF=60°,且DF交∠ACE的角平分線于點F.

1)求證:AC=CDCF;

2)如圖2,當點DBC的延長上時,猜想ACCD、CF的數(shù)量關系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊△ABC中,點D,E分別在邊BC,AB上,且BD=AE,AD與CE交于點F,作CM⊥AD,垂足為M,下列結論不正確的是( 。

A. AD=CE B. MF=CF C. ∠BEC=∠CDA D. AM=CM

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若整數(shù)a既使關于x的分式方程的解為正數(shù),又使關于x的一元二次方程x2﹣2x+2a﹣5=0有實數(shù)解,則符合條件的所有a的和是( 。

A. 0 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】海南建省30年來,各項事業(yè)取得令人矚目的成就,以2016年為例,全省社會固定資產(chǎn)總投資約3730億元,其中包括中央項目、省屬項目、地(市)屬項目、縣(市)屬項目和其他項目.圖1、圖2分別是這五個項目的投資額不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖,請完成下列問題:

(1)在圖1中,先計算地(市)屬項目投資額為   億元,然后將條形統(tǒng)計圖補充完整;

(2)在圖2中,縣(市)屬項目部分所占百分比為m%、對應的圓心角為β,則m=   ,β=   度(m、β均取整數(shù)).

查看答案和解析>>

同步練習冊答案