【題目】如圖,A(8,6)是反比例函數(shù)y=(x>0)在第一象限圖象上一點,連接OA,過A作AB∥x軸,且AB=OA(B在A右側),直線OB交反比例函數(shù)y=的圖象于點M
(1)求反比例函數(shù)y=的表達式;
(2)求點M的坐標;
(3)設直線AM關系式為y=nx+b,觀察圖象,請直接寫出不等式nx+b﹣≤0的解集.
【答案】(1)y=;(2)M(12,4);(3)0<x≤8或x≥12.
【解析】
(1)根據(jù)待定系數(shù)法即可求得;
(2)利用勾股定理求得AB=OA=10,由AB∥x軸即可得點B的坐標,即可求得直線OB的解析式,然后聯(lián)立方程求得點M的坐標;
(3)根據(jù)A、M點的坐標,結合圖象即可求得.
解:(1)∵A(8,6)在反比例函數(shù)圖象上
∴6=,即m=48,
∴反比例函數(shù)y=的表達式為y=;
(2)∵A(8,6),作AC⊥x軸,由勾股定理得OA=10,
∵AB=OA,
∴AB=10,
∴B(18,6),
設直線OB的關系式為y=kx,
∴6=18k,
∴k=,
∴直線OB的關系式為y=x,
由 ,解得x=±12
又∵在第一象限
∴x=12
故M(12,4);
(3)∵A(8,6),M(12,4),
觀察圖象,不等式nx+b﹣≤0的解集為:0<x≤8或x≥12.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB和拋物線的交點是A(0,-3),B(5,9),已知拋物線的頂點D的橫坐標是2.
(1)求拋物線的解析式及頂點坐標;
(2)在軸上是否存在一點C,與A,B組成等腰三角形?若存在,求出點C的坐標,若不存在,請說明理由;
(3)在直線AB的下方拋物線上找一點P,連接PA,PB使得△PAB的面積最大,并求出這個最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(7分)如圖,△ABC中,∠ACB=90°,D.E分別是BC、BA的中點,聯(lián)結DE,F(xiàn)在DE延長線上,且AF=AE.
(1)求證:四邊形ACEF是平行四邊形;
(2)若四邊形ACEF是菱形,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】臨近期末考試,心理專家建議考生可通過以下四種方式進行考前減壓:.享受美食,.交流談心,.體育鍛煉,.欣賞藝術.
(1)隨機采訪一名九年級考生,選擇其中某一種方式,他選擇“享受美食”的概率是 .
(2)同時采訪兩名九年級考生,請用畫樹狀圖或列表的方法求他們中至少有一人選擇“欣賞藝術”的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,對角線AC、BD相交于點O,BD=2AD,E、F、G分別是OC、OD、AB的中點,下列結論:①BE⊥AC;②EG=EF;③△EFG≌△GBE;④EA平分∠GEF;⑤四邊形BEFG是菱形.其中正確的個數(shù)是( 。
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,學校附近有一條筆直的公路l,其間設有區(qū)間測速,所有車輛限速40千米/小時.數(shù)學實踐活動小組設計了如下活動:在l上確定A,B兩點,并在AB路段進行區(qū)間測速在l外取一點P,作PC⊥1,垂足為點C.測得PC=30米,∠APC=71°,∠BPC=35°,測得一汽車從點A到點B用時6秒,請你用所學的數(shù)學知識說明該車是否超速?(參考數(shù)據(jù):sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在趣味運動會“定點投籃”項目中,我校七年級八個班的投籃成績單位:個分別為:24,20,19,20,22,23,20,則這組數(shù)據(jù)中的眾數(shù)和中位數(shù)分別是
A. 22個、20個 B. 22個、21個 C. 20個、21個 D. 20個、22個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系 xOy 中,已知正比例函數(shù) y1=﹣2x 的圖象與反比例函數(shù) y2=的圖象交于 A(﹣1,a),B 兩點.
(1)求出反比例函數(shù)的解析式及點 B 的坐標;
(2)觀察圖象,請直接寫出滿足 y≤2 的取值范圍;
(3)點 P 是第四象限內反比例函數(shù)的圖象上一點,若△POB 的面積為 1,請直接寫出點 P的橫坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com