【題目】如圖,在四邊形ABCD中,AB∥CD,∠1=∠2,DB=DC.
(1)求證:△ABD≌△EDC;
(2)若∠A=135°,∠BDC=30°,求∠BCE的度數(shù).
【答案】(1)證明見解析;(2)60°.
【解析】試題分析:由全等三角形的判定方法:ASA,即可證明:△ABD≌△EDC;
(2)根據(jù)三角形內(nèi)角和定理可求出∠1的度數(shù),進而可得到∠2的度數(shù),再根據(jù)△BDC是等腰三角形,即可求出∠BCE的度數(shù).
試題解析:(1)證明:∵AB∥CD,∴∠ABD=∠EDC,
在△ABD和△EDC中,, ∴△ABD≌△EDC(ASA),
(2)解:∵∠ABD=∠EDC=30°,∠A=135°, ∴∠1=∠2=15°, ∵DB=DC,
∴∠DCB=(180°-∠DBC)=75°, ∴∠BCE=75°﹣15°=60°.
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料:
五個邊長為的小正方形如圖①放置,要求用兩條線段將它們分割成三部分后把它們拼接成一個新的正方形.
小辰是這樣思考的:圖①中五個邊長為的小正方形的面積的和為,拼接后的正方形的面積也應(yīng)該是,故而拼接后的正方形的邊長為,因此想到了依據(jù)勾股定理,構(gòu)造長為的線段,即:,因此想到了兩直角邊分別為和的直角三角形的斜邊正好是,如圖②,進而拼接成了一個便長為的正方形.
參考上面的材料和小辰的思考方法,解決問題:
()五個邊長為的小正方形如圖④放置,類似圖③,在圖④中畫出分割線和拼接后的正方形(只要畫出一種即可).
()十個邊長為的小正方形如圖⑤放置,類似圖③,在圖⑤中畫出兩條分割線將它們分割成三部分,并畫出拼接后的正方形(只要畫出一種即可).
()五個邊長為的小正方形如圖⑥放置,類似圖③,在圖⑥中畫出兩條分割線將它們分割成三部分,并畫出拼接后的正方形(只要畫出一種即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)y=﹣ax+b的圖象與反比例函數(shù)y= 的圖象相交于點A(﹣4,﹣2),B(m,4),與y軸相交于點C.
(1)求反比例函數(shù)和一次函數(shù)的表達式;
(2)求點C的坐標及△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“五一”假期,成都某公司組織部分員工分別到甲、乙、丙、丁四地考察,公司按定額購買了前往各地的車票,如圖是用來制作完整的車票種類和相應(yīng)數(shù)量的條形統(tǒng)計圖,根據(jù)統(tǒng)計圖回答下列問題:
若去丙地的車票占全部車票的,則總票數(shù)為______ 張,去丁地的車票有______ 張
若公司采用隨機抽取的方式發(fā)車票,小胡先從所有的車票中隨機抽取一張所有車票的形狀、大小、質(zhì)地完全相同、均勻,那么員工小胡抽到去甲地的車票的概率是多少?
若有一張車票,小王和小李都想要,他們決定采取擲一枚質(zhì)地均勻的正方體骰子的方式來確定給誰,其上的數(shù)字是3的倍數(shù),則給小王,否則給小李請問這個規(guī)則對雙方是否公平?若公平請說明理由;若不公平,請通過計算說明對誰更有利.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD,∠A=60°,AB=4,以點B為圓心的扇形與邊CD相切于點E,扇形的圓心角為60°,點E是CD的中點,圖中兩塊陰影部分的面積分別為S1 , S2 , 則S2﹣S1= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學興趣小組想利用所學的知識了解某廣告牌的高度(圖中GH的長),經(jīng)測量知CD=2m,在B處測得點D的仰角為60°,在A處測得點C的仰角為30°,AB=10m,且A、B、H三點共線,請根據(jù)以上數(shù)據(jù)計算GH的長( ,要求結(jié)果精確得到0.1m)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列說法:①2a+b=0,②當﹣1≤x≤3時,y<0;③3a+c=0;④若(x1 , y1)(x2、y2)在函數(shù)圖象上,當0<x1<x2時,y1<y2 , 其中正確的是( )
A.①②④
B.①③
C.①②③
D.①③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,過等邊三角形ABC邊AB上一點D作DE∥BC交邊AC于點E,分別取BC,DE的中點M,N,連接MN.
(1)發(fā)現(xiàn):在圖1中, =;
(2)應(yīng)用:如圖2,將△ADE繞點A旋轉(zhuǎn),請求出 的值;
(3)拓展:如圖3,△ABC和△ADE是等腰三角形,且∠BAC=∠DAE,M,N分別是底邊BC,DE的中點,若BD⊥CE,請直接寫出 的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com