【題目】1)已知a,b滿足 +|b-1|=0,求b-a的算術(shù)平方根。

2)如果一個正數(shù)m的兩個平方根分別是2a3a9,求2m2的值.

【答案】(1)2;(2)48.

【解析】

1)根據(jù)非負數(shù)的性質(zhì)解答.當兩個非負數(shù)相加和為0時,必須滿足其中的每一項都等于0.(2)根據(jù)一個整數(shù)的兩個平方根互為相反數(shù)求出a的值,利用平方根和平方的關(guān)系求出m,再求出2m-2的值.

解:(1)∵+|b-1|=0
a=-3,b=1,
b-a=1-(-3)=4, 4 的算術(shù)平方根是2;

故答案為: 2

2):∵一個正數(shù)的兩個平方根互為相反數(shù),
∴(2a-3+a-9=0,
解得a=4,
∴這個正數(shù)為m=2a-32=52=25
2m-2=2×25-2=48;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,直線l1:y=﹣x+n過點A(﹣1,3),雙曲線C:y= (x>0),過點B(1,2),動直線l2:y=kx﹣2k+2(常數(shù)k<0)恒過定點F.

(1)求直線l1 , 雙曲線C的解析式,定點F的坐標;
(2)在雙曲線C上取一點P(x,y),過P作x軸的平行線交直線l1于M,連接PF.求證:PF=PM.
(3)若動直線l2與雙曲線C交于P1 , P2兩點,連接OF交直線l1于點E,連接P1E,P2E,求證:EF平分∠P1EP2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,銳角三角形ABC的邊AB和AC上的高線CE和BF相交于點D.請寫出圖中的一對相似三角形,如

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,從數(shù)軸上的原點開始,先向左移動2cm到達A點,再向左移動4cm到達B點,然后向右移動10cm到達C點.

1)用1個單位長度表示1cm,請你在題中所給的數(shù)軸上表示出A、B、C三點的位置;

2)把點C到點A的距離記為CA,則CA______cm

3)若點B以每秒3cm的速度向左移動,同時A、C點以每秒lcm5cm的速度向右移動,設(shè)移動時間為tt0)秒,試探究CAAB的值是否會隨著t的變化而改變?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,以△ABC的邊AB為直徑作⊙O,點C在⊙O上,BD是⊙O的弦,∠A=∠CBD,過點C作CF⊥AB于點F,交BD于點G,過C作CE∥BD交AB的延長線于點E.

(1)求證:CE是⊙O的切線;
(2)求證:CG=BG;
(3)若∠DBA=30°,CG=4,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,一次函數(shù)y=-x+4的圖象如圖所示.

(1)在同一坐標系中,作出一次函數(shù)y=2x-5的圖象;

(2)用作圖象的方法解方程組

(3)求一次函數(shù)y=-x+4與y=2x-5的圖象與x軸所圍成的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小婷家與學(xué)校之間是一條筆直的公路,小婷從家步行前往學(xué)校的途中發(fā)現(xiàn)忘記帶昨天的回家作業(yè)本,便向路人借了手機打給媽媽,媽媽接到電話后,帶上作業(yè)本馬上趕往學(xué)校,同時小婷沿原路返回兩人相遇后,小婷立即趕往學(xué)校,媽媽沿原路返回家,并且小婷到達學(xué)校比媽媽到家多用了5分鐘,若小婷步行的速度始終是每分鐘100米,小婷和媽媽之間的距離y與小婷打完電話后步行的時間x之間的函數(shù)關(guān)系如圖所示

媽媽從家出發(fā)______分鐘后與小婷相遇;

相遇后媽媽回家的平均速度是每分鐘______米,小婷家離學(xué)校的距離為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,直線于點,是直角三角形,且∠=90°,斜邊交直線于點,平分∠,∠的平分線交的延長線于點,∠=36°.

(1)如圖1,當時,求∠的度數(shù).

(2)如圖2,當點旋轉(zhuǎn)一定的角度(即不平行),其他條件不變,問∠的度數(shù)是否發(fā)生改變?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCABD中,CD90°,若利用“HL”證明ABC≌△ABD,則需要添加的條件是________________

查看答案和解析>>

同步練習(xí)冊答案