【題目】如圖,AB是⊙O的直徑,C,D是⊙O上的點,且OC∥BD,AD與BC,OC分別相交于點E,F,則下列結論:①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤△CEF≌△BED.其中一定成立的結論是_____.(填序號)
【答案】①③④
【解析】
①由直徑所對圓周角是直角,
②由于∠AOC是⊙O的圓心角,∠AEC是⊙O的圓內部的角,
③由平行線得到∠OCB=∠DBC,再由同圓的半徑相等得到結論判斷出∠OBC=∠DBC;
④用半徑垂直于不是直徑的弦,必平分弦;
⑤得不到△CEF和△BED中對應相等的邊,所以不一定全等.
①∵AB是⊙O的直徑,
∴∠ADB=90°,
∴AD⊥BD,
故①正確;
②∵∠AOC是⊙O的圓心角,∠AEC是⊙O的圓內部的角,
∴∠AOC≠∠AEC,
故②不正確;
③∵OC∥BD,
∴∠OCB=∠DBC,
∵OC=OB,
∴∠OCB=∠OBC,
∴∠OBC=∠DBC,
∴BC平分∠ABD,
故③正確;
④∵AB是⊙O的直徑,
∴∠ADB=90°,
∴AD⊥BD,
∵OC∥BD,
∴∠AFO=90°,
∵點O為圓心,
∴AF=DF,
故④正確;
⑤∵△CEF和△BED中,沒有相等的邊,
∴△CEF與△BED不全等,
故⑤不正確;
綜上可知:其中一定成立的有①③④,
故答案為:①③④.
科目:初中數學 來源: 題型:
【題目】已知,△ABC中,∠A=68°,以AB為直徑的⊙O與AC,BC的交點分別為D,E
(Ⅰ)如圖①,求∠CED的大;
(Ⅱ)如圖②,當DE=BE時,求∠C的大。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1和圖2,是直線上一動點,兩點在直線的同側,且點所在直線與不平行.
(1)當點運動到位置時,距離點最近,在圖1中的直線上畫出點的位置;
(2)當點運動到位置時,與點的距離和與點距兩相等,請在圖2中作出位置;
(3)在直線上是否存在這樣一點,使得到點的距離與到點的距離之和最?若存在請在圖3中作出這點,若不存在清說明理由.
(要求:不寫作法,請保留作圖痕跡)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=30°,以AB為直徑的⊙O交BC于點D,交AC于點E,連結DE,過點B作BP平行于DE,交⊙O于點P,連結EP、CP、OP.
(1)BD=DC嗎?說明理由;
(2)求∠BOP的度數;
(3)求證:CP是⊙O的切線.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①、圖②,方格紙中的每個小正方形的邊長均為1,小正方形的頂點稱為格點,圖①和圖②中的點A、點B都是格點.分別在圖①、圖②中畫出格點C,并滿足下面的條件:
(1)在圖①中,使∠ABC=90°.此時AC的長度是 .
(2)在圖②中,使AB=AC.此時△ABC的邊AB上的高是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】數學概念:百度百科上這樣定義絕對值函數:y=│x│=
并給出了函數的圖像(如圖).
方法遷移
借鑒研究正比例函數y=kx與一次函數y=kx+b(k,b是常數,且k≠0)之間關系的經驗,我們來研究函數y=│x+a│(a是常數)的圖像與性質.
“從‘1’開始”
我們嘗試從特殊到一般,先研究當a=1時的函數y=│x+1│.
按照要求完成下列問題:
(1)觀察該函數表達式,直接寫出y的取值范圍;
(2)通過列表、描點、畫圖,在平面直角坐標系中畫出該函數的圖像.
“從‘1’到一切”
(3)繼續(xù)研究當a的值為-2,-,2,3,…時函數y=│x+a│的圖像與性質,
嘗試總結:
①函數y=│x+a│(a≠0)的圖像怎樣由函數y=│x│的圖像平移得到?
②寫出函數y=│x+a│的一條性質.
知識應用
(4)已知A(x1,y1),B(x2,y2)是函數y=│x+a│的圖像上的任意兩點,且滿足x1<x2≤-1時, y1>y2,則a的取值范圍是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某學校甲、乙兩名同學去愛國主義教育基地參觀,該基地與學校相距2400米.甲從學校步行去基地,出發(fā)5分鐘后乙再出發(fā),乙從學校騎自行車到基地. 乙騎行到一半時,發(fā)現有東西忘帶,立即返回,拿好東西之后再從學校出發(fā).在騎行過程中,乙的速度保持不變,最后甲、乙兩人同時到達基地. 已知,乙騎行的總時間是甲步行時間的.設甲步行的時間為(分),圖中線段OA表示甲離開學校的路程(米)與(分)的函數關系的圖像.圖中折線B—C—D和線段EA表示乙離開學校的路程(米)與(分)的函數關系的圖像.根據圖中所給的信息,解答下列問題:
(1)甲步行的速度和乙騎行的速度;
(2)甲出發(fā)多少時間后,甲、乙兩人第二次相遇?
(3)若(米)表示甲、乙兩人之間的距離,當時,求(米)關于(分)的函數關系式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在“一帶一路”戰(zhàn)略的影響下,某茶葉經銷商準備把“茶路”融入“絲路”,經計算,他銷售10kgA級別和20kgB級別茶葉的利潤為4000元,銷售20kgA級別和10kgB級別茶葉的利潤為3500元.
(1)求每千克A級別茶葉和B級別茶葉的銷售利潤;
(2)若該經銷商一次購進兩種級別的茶葉共200kg用于出口,其中B級別茶葉的進貨量不超過A級別茶葉的2倍,請你幫該經銷商設計一種進貨方案使銷售總利潤最大,并求出總利潤的最大值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com