【題目】已知,△ABC中,∠A=68°,以AB為直徑的⊙O與AC,BC的交點分別為D,E

(Ⅰ)如圖①,求∠CED的大;

(Ⅱ)如圖②,當DE=BE時,求∠C的大小.

【答案】)68°()56°

【解析】

(1)圓內(nèi)接四邊形的一個外角等于它的內(nèi)對角,利用圓內(nèi)接四邊形的性質(zhì)證明∠CED=∠A即可,(2)連接AE,Rt△AEC,先根據(jù)同圓中,相等的弦所對弧相等,再根據(jù)同圓中,相等的弧所對圓周角相等, 求出∠EAC,最后根據(jù)直徑所對圓周是直角,利用直角三角形兩銳角互余即可解決問題.

(Ⅰ)∵四邊形ABED 圓內(nèi)接四邊形,

∴∠A+∠DEB=180°,

∵∠CED+∠DEB=180°,

∴∠CED=∠A,

∵∠A=68°,

∴∠CED=68°.

(Ⅱ)連接AE.

∵DE=BD,

,

∴∠DAE=∠EAB=∠CAB=34°,

∵AB是直徑,

∴∠AEB=90°,

∴∠AEC=90°,

∴∠C=90°﹣∠DAE=90°﹣34°=56°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線軸交于點,與軸交于點,已知點

1)求出點,點的坐標.

2是直線上一動點,且的面積相等,求點坐標.

3)如圖2,平移直線,分別交軸,軸于交于點,過點作平行于軸的直線,在直線上是否存在點,使得是等腰直角三角形?若存在,請直接寫出所有符合條件的點的坐標.

1 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為響應市政府綠色出行的號召,小張上班由自駕車改為騎公共自行車.已知小張家距上班地點10千米.他騎公共自行車比自駕車平均每小時少行駛45千米,他從家出發(fā)到上班地點,騎公共自行車所用的時間是自駕車所用的時間的4倍.小張騎公共自行車平均每小時行駛多少千米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某大學計劃為新生配備如圖1所示的折疊椅.圖2中的正方形ACBD是折疊椅撐開后的側面示意圖,其中椅腿ABCD的長相等,O是它們的中點.若正方形ACBD的面積為[9(2x3y)2+12(2x3y) (x+4y) +4(x+4y)2](米2)(xy),你能求出這種折疊椅張開后的高度嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】煙臺享有“蘋果之鄉(xiāng)”的美譽.甲、乙兩超市分別用3000元以相同的進價購進質(zhì)量相同的蘋果.甲超市銷售方案是:將蘋果按大小分類包裝銷售,其中大蘋果400千克,以進價的2倍價格銷售,剩下的小蘋果以高于進價10%銷售.乙超市的銷售方案是:不將蘋果按大小分類,直接包裝銷售,價格按甲超市大、小兩種蘋果售價的平均數(shù)定價.若兩超市將蘋果全部售完,其中甲超市獲利2100元(其它成本不計).問:

(1)蘋果進價為每千克多少元?

(2)乙超市獲利多少元?并比較哪種銷售方式更合算.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC與∠ACB的平分線交于點O,過OEFBC分別交AB、ACE、F.

1)求證:EF=BE+CF.

2)在△ABC中,∠ABC的角平分線與∠ACB相鄰的外角的平分線相交于點O,過OEFBC分別交ABACE、F,請你畫出圖形(不要求尺規(guī)作圖),并直接寫出EFBE、CF之間的關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】△ABC中,BC=a ,AB=cAC=b,則不能作為判定△ABC是直角三角形的條件的是(

A.B.A∶∠B∶∠C=1∶4∶3

C.abc =7∶24∶25D.abc =4∶5∶6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,.動點、分別從點、點同時出發(fā),相向而行,速度都為.以為一邊向上作正方形,過點,交于點.設運動時間為,單位:,正方形和梯形重合部分的面積為

時,點與點重合.

時,點上.

當點,兩點之間(不包括,兩點)時,求之間的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C,D是⊙O上的點,且OC∥BD,AD與BC,OC分別相交于點E,F(xiàn),則下列結論:①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤△CEF≌△BED.其中一定成立的結論是_____.(填序號)

查看答案和解析>>

同步練習冊答案