【題目】小麗同學(xué)學(xué)習(xí)了統(tǒng)計知識后,帶領(lǐng)班級“課外活動小組”,隨機調(diào)查了某轄區(qū)若干名居民的年齡,并將調(diào)查數(shù)據(jù)繪制成圖①和圖②兩幅尚不完整的統(tǒng)計圖.
請你根據(jù)圖中的信息,解答下列各題:
(1)共抽查了_____名居民的年齡,扇形統(tǒng)計圖中_____,______;
(2)補全條形統(tǒng)計圖;
(3)若該轄區(qū)居民約有2600人,請你估計年齡在15~59歲的居民人數(shù).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場要經(jīng)營一種文具,進價為20元/件,試營銷階段發(fā)現(xiàn):當(dāng)銷售價格為25元/件時,每天的銷售量為250件,每件銷售價格每上漲1元,每天的銷售量就減少10件.
(1)當(dāng)每天的利潤為1440元時,為了讓利給顧客,每件文具的銷售價格應(yīng)定為多少元?
(2)設(shè)每天的銷售利潤為W元,每件文具的銷售價格為x元,如果要求每天的銷售量不少于10件,且每件文具的利潤至少為25元.
①求W與x的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
②問當(dāng)銷售價格定為多少時,該文具每天的銷售利潤最大,最大利潤為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(白云區(qū)校級二模)如圖,在△ABC中,AB=10,BC=12,以AB為直徑的⊙O交BC于點D.過點D的⊙O的切線垂直AC于點F,交AB的延長線于點E.
(1)連接OD,則OD與AC的位置關(guān)系是 .
(2)求AC的長.
(3)求sinE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O.如圖,
(1)作⊙O的直徑AB;
(2)以點A為圓心,AO長為半徑畫弧,交⊙O于C,D兩點;
(3)連接CD交AB于點E,連接AC,BC.
根據(jù)以上作圖過程及所作圖形,有下面三個推斷:
①CE=DE; ②BE=3AE; ③BC=2CE.
所有正確推斷的序號是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx﹣3a(a≠0)經(jīng)過點A(﹣1,0).
(1)求拋物線的頂點坐標(biāo);(用含a的式子表示)
(2)已知點B(3,4),將點B向左平移3個單位長度,得到點C.若拋物線與線段BC恰有一個公共點,結(jié)合函數(shù)的圖象,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的頂點A,B分別在y軸、x軸上,OA=2,OB=1,斜邊AC∥x軸.若反比例函數(shù)y(k>0,x>0)的圖象經(jīng)過AC的中點D,則k的值為( )
A.4B.5C.6D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l:y=﹣x+2與x軸、y軸分別交于A、B兩點,動點M從點A以每秒1個單位的速度沿x軸向左移動.
(1)求A、B兩點的坐標(biāo);
(2)將直線l向上平移4個單位后得到直線l',交y軸于點C.求直線l′的函數(shù)表達(dá)式;
(3)設(shè)點M的移動時間為t,當(dāng)t為何值時,△COM≌△AOB,并求出此時點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個小正方形的邊長為的網(wǎng)格中,的頂點均落在格點上,
(1)的長等于________;
(2)在△ABC的內(nèi)部有一點P,滿足S△PAB:S△PBC:S△PCA=1:2:3,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出點P,并簡要說明點P的位置是如何找到的(不要求證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國古代偉大的數(shù)學(xué)家劉徽于公元263年撰《九章算術(shù)注》中指出,“周三徑一”不是圓周率值,實際上是圓內(nèi)接正六邊形周長和直徑的比值(圖1).劉徽發(fā)現(xiàn),圓內(nèi)接正多邊形邊數(shù)無限增加時,多邊形的周長就無限逼近圓周長,從而創(chuàng)立“割圓術(shù)”,為計算圓周率建立起相當(dāng)嚴(yán)密的理論和完善的算法.如圖2,六邊形是圓內(nèi)接正六邊形,把每段弧二等分,作出一個圓內(nèi)接正十二邊形,連結(jié)交于點若,則的長為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com