【題目】如圖,一游船往返于AB,C三島,此船從A島出發(fā)向正東方向航行1小時到達(dá)B島,C島在A島的北偏東60°方向,在B島的北偏東15°方向,已知游船的航速為20海里/小時,求此船從B島航行到C島需要多少小時?(≈1.414,結(jié)果精確到0.1小時)

【答案】此船從B島航行到C島需要0.7小時

【解析】

過點BBFAC于點F,先根據(jù)題意得出∠BAF30°、∠FBC45°,由AB20海里知BFAB10海里,再由BC≈14.1可得答案.

解:如圖,過點BBFAC于點F,

∵∠DAC60°,∠EAC15°

∴∠BAF30°,∠ABF60°,

則∠EBF30°,

∴∠FBC45°

AB20海里,

BFAB10海里,

RtBCF中,BC10≈14.1(海里),

14.1÷200.7(小時),

答:此船從B島航行到C島需要0.7小時.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:拋物線軸交于兩點,與軸交于點,點為頂點,連接,拋物線的對稱軸與軸交與點

1)求拋物線解析式及點的坐標(biāo);

2G是拋物線上之間的一點,且,求出點坐標(biāo);

3)在拋物線上,之間是否存在一點,過點,交直線于點,使以,為頂點的三角形與相似?若存在,求出滿足條件的點的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+c的圖象經(jīng)過點A(1,0)、點B(3,0)、點C(4y1),若點D(x2,y2)是拋物線上任意一點,有下列結(jié)論:

①二次函數(shù)yax2+bx+c的最小值為﹣4a

②若﹣1≤x2≤4,則0≤y2≤5a;

③若y2y1,則x24;

④一元二次方程cx2+bx+a0的兩個根為﹣1

其中正確結(jié)論的是_____(填序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2+mx+n與x軸正半軸交于A,B兩點(點A在點B左側(cè)),與y軸交于點C.

(1)利用直尺和圓規(guī),作出拋物線y=x2+mx+n的對稱軸(尺規(guī)作圖,保留作圖痕跡,不寫作法);

(2)若△OBC是等腰直角三角形,且其腰長為3,求拋物線的解析式;

(3)在(2)的條件下,點P為拋物線對稱軸上的一點,則PA+PC的最小值為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,邊上一點,將沿翻折,點落在點處,當(dāng)為直角三角形時,________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形中,對角線相交于點,,點上一動點,點的速度從點出發(fā)沿向點運動.設(shè)運動時間為,當(dāng)________時,為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(滿分8分)如圖,某教學(xué)樓AB的后面有一建筑物CD,當(dāng)光線與地面的夾角是22°時,教學(xué)樓在建筑物的墻上留下高2m的影子CE;而當(dāng)光線與地面的夾角是45°時,教學(xué)樓頂A在地面上的影子F與墻角C的距離為18m (BFC在一條直線上).

求教學(xué)樓AB的高度.(結(jié)果保留整數(shù))

參考數(shù)據(jù)sin22°0.37cos22°0.93,tan22°0.40 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AB10cm,E為對角線BD上一動點,連接AE,CE,過E點作EFAE,交直線BC于點FE點從B點出發(fā),沿著BD方向以每秒2cm的速度運動,當(dāng)點E與點D重合時,運動停止.設(shè)△BEF的面積為ycm2E點的運動時間為x秒.

1)求證:CEEF;

2)求yx之間關(guān)系的函數(shù)表達(dá)式,并寫出自變量x的取值范圍;

3)求△BEF面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y+ba、b為常數(shù)且a≠0)中,當(dāng)x2時,y4;當(dāng)x=﹣1時,y1.請對該函數(shù)及其圖象進(jìn)行如下探究:

1)求該函數(shù)的解析式,并直接寫出該函數(shù)自變量x的取值范圍;

2)請在下列直角坐標(biāo)系中畫出該函數(shù)的圖象;

3)請你在上方直角坐標(biāo)系中畫出函數(shù)y2x的圖象,結(jié)合上述函數(shù)的圖象,寫出不等式+b≤2x的解集.

查看答案和解析>>

同步練習(xí)冊答案