【題目】(滿分8分)如圖,某教學(xué)樓AB的后面有一建筑物CD,當(dāng)光線與地面的夾角是22°時(shí),教學(xué)樓在建筑物的墻上留下高2m的影子CE;而當(dāng)光線與地面的夾角是45°時(shí),教學(xué)樓頂A在地面上的影子F與墻角C的距離為18m (B、F、C在一條直線上).

求教學(xué)樓AB的高度.(結(jié)果保留整數(shù))

參考數(shù)據(jù)sin22°0.37cos22°0.93,tan22°0.40 .

【答案】15m

【解析】試題分析: 首先構(gòu)造直角三角形AEG,利用tan22°=,求出即可;

試題解析:

過點(diǎn)EEGABG ,則四邊形BCEG是矩形,

BC=EG,BG=CE=2m

設(shè)教學(xué)樓AB的高為xm,

∵∠AFB=45° ∴∠FAB=45°, BF=AB=xm, EG=BC=x+18m ,AG=x-2m

RtAEG中,∠AEG=22°

tanAEG= ,

tan22°=

解得:x≈15m.

答:教學(xué)樓AB的高約為15m

點(diǎn)睛: 此題主要考查了解直角三角形的應(yīng)用,根據(jù)已知得出tan22°=是解題關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:3a2b+6ab2=____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD內(nèi)兩點(diǎn)M、N,滿足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四邊形BMDN的面積是菱形ABCD面積的,則cosA= ______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2015年1月,市教育局在全市中小學(xué)中選取了63所學(xué)校從學(xué)生的思想品德、學(xué)業(yè)水平、學(xué)業(yè)負(fù)擔(dān)、身心發(fā)展和興趣特長(zhǎng)五個(gè)維度進(jìn)行了綜合評(píng)價(jià).評(píng)價(jià)小組在選取的某中學(xué)七年級(jí)全體學(xué)生中隨機(jī)抽取了若干名學(xué)生進(jìn)行問卷調(diào)查,了解他們每天在課外用于學(xué)習(xí)的時(shí)間,并繪制成如下不完整的統(tǒng)計(jì)圖. 根據(jù)上述信息,解答下列問題:

(1)本次抽取的學(xué)生人數(shù)是 ______ ;扇形統(tǒng)計(jì)圖中的圓心角α等于 ______ ;補(bǔ)全統(tǒng)計(jì)直方圖;

(2)被抽取的學(xué)生還要進(jìn)行一次50米跑測(cè)試,每5人一組進(jìn)行.在隨機(jī)分組時(shí),小紅、小花兩名女生被分到同一個(gè)小組,請(qǐng)用列表法或畫樹狀圖求出她倆在抽道次時(shí)抽在相鄰兩道的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在梯形ABCD中,DC∥AB,AD=BC=2,BD平分∠ABC,∠A=60°.求:梯形ABCD的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,EAC90°1290°,13,24.

(1)如圖①求證:DEBC;

(2)若將圖①改變?yōu)閳D②,其他條件不變,(1)中的結(jié)論是否仍成立?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列條件中,不能判定兩個(gè)直角三角形全等的是( )

A. 兩個(gè)銳角對(duì)應(yīng)相等 B. 一條直角邊和一個(gè)銳角對(duì)應(yīng)相等

C. 兩條直角邊對(duì)應(yīng)相等 D. 一條直角邊和一條斜邊對(duì)應(yīng)相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB=12cm,點(diǎn)C是線段AB上的一點(diǎn),BC=2AC.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以3cm/s的速度向右運(yùn)動(dòng),到達(dá)點(diǎn)B后立即返回,以3cm/s的速度向左運(yùn)動(dòng);動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),以1cm/s的速度向右運(yùn)動(dòng).設(shè)它們同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為ts.當(dāng)點(diǎn)P與點(diǎn)Q第二次重合時(shí),P、Q兩點(diǎn)停止運(yùn)動(dòng).

(1)AC=__cm,BC=__cm;

(2)當(dāng)t為何值時(shí),AP=PQ;

(3)當(dāng)t為何值時(shí),PQ=1cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國明代著名數(shù)學(xué)家程大位的《算法統(tǒng)宗》一書中記載了一些詩歌形式的算題,其中有一個(gè)“百羊問題”甲趕群羊逐草茂,乙拽肥羊一只隨其后;戲問甲及一百否?甲云所說無差謬,若得這般一群湊,再添半群小半群,得你一只來方湊.玄機(jī)奧妙誰猜透.題目的意思是甲趕了一群羊在草地上往前走乙牽了一只肥羊緊跟在甲的后面.乙問甲“你這群羊有一百只嗎?”甲說“如果再有這么一群再加半群,又加四分之一群,再把你的一只湊進(jìn)來,才滿100只.”請(qǐng)問甲原來趕的羊一共有多少只?如果設(shè)甲原來趕的羊一共有,那么可列方程______________

查看答案和解析>>

同步練習(xí)冊(cè)答案