一次函數(shù)y=(k-)x-3k+10(k為偶數(shù))的圖象經(jīng)過(guò)第一、二、三象限,與x軸、y軸分別交于A、B兩點(diǎn),過(guò)點(diǎn)B作一直線與坐標(biāo)軸圍成的三角形面積為2,交x軸于點(diǎn)C.
(1)求k的值;
(2)若一拋物線經(jīng)過(guò)點(diǎn)A、B、C三點(diǎn),求此拋物線的解析式。
(3)當(dāng)拋物線開口向上時(shí)過(guò)A、B、C三點(diǎn)作△ABC,求tan∠ABC的值。
解(1)⑴由題意得:,
解得<k<,又k為偶數(shù),∴k=2
⑵求得A(-3,0)、B(0,4),
∴OB=4,
∵S=·OB·OC==2·OC=2,
∴OC=1
∴C(1,0)或(-1,0)
若取C(1,0)、A(-3,0)、B(0,4),設(shè)y=a(x+3)(x-1),
將B(0,4)代入,求得a=-.
∴拋物線為
若取C(-1,0)、A(-3,0)、B(0,4),設(shè)y=a(x+3)(x+1),將B(0,4)代入,
求得a=
∴拋物線為y=x+x+4
⑶如圖,過(guò)C作CD⊥AB于D,則tan∠ABC=
∵ Sin∠BAO==,cos∠BAO==
∴ = , DC=,=,AD=,…………10分
∴BD=
∴tan∠ABC=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知:四邊形ABCD中,AD∥BC,AD=AB=CD,∠BAD=120°,點(diǎn)E是射線CD上的一個(gè)動(dòng)點(diǎn)(與C、D不重合),將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)120°后,得到△ABE',連接EE'.
(1)如圖1,∠AEE'= °;
(2)如圖2,如果將直線AE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)30°后交直線BC于點(diǎn)F,過(guò)點(diǎn)E作EM∥AD交直線AF于點(diǎn)M,寫出線段DE、BF、ME之間的數(shù)量關(guān)系;
(3)如圖3,在(2)的條件下,如果CE=2,AE=,求ME的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知二次函數(shù)的圖象對(duì)稱軸為,且過(guò)點(diǎn)B(-1,0).
求此二次函數(shù)的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,直線與直線相交于點(diǎn).直線與y軸交于點(diǎn)A.一動(dòng)點(diǎn)從點(diǎn)A出發(fā),先沿平行于x軸的方向運(yùn)動(dòng),到達(dá)直線上的點(diǎn)處后,改為垂直于x軸的方向運(yùn)動(dòng),到達(dá)直線上的點(diǎn)處后,再沿平行于x軸的方向運(yùn)動(dòng),到達(dá)直線上的點(diǎn)處后,又改為垂直于x軸的方向運(yùn)動(dòng),到達(dá)直線上的點(diǎn)處后,仍沿平行于x軸的方向運(yùn)動(dòng),…… 照此規(guī)律運(yùn)動(dòng),動(dòng)點(diǎn)依次經(jīng)過(guò)點(diǎn),,,,,,…,,,…
則當(dāng)動(dòng)點(diǎn)到達(dá)處時(shí),運(yùn)動(dòng)的總路徑的長(zhǎng)為( )(根據(jù)2011江干區(qū)模擬改編)
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知△ABC,用直尺和圓規(guī),根據(jù)下列要求作圖(保留作圖痕跡,不寫作法)
(1)作∠ABC的平分線BD交AC于點(diǎn)D;
(2)作線段BD的垂直平分線交AB于點(diǎn)E,交BC于點(diǎn)F。由(1)(2)可得,你發(fā)現(xiàn)了BEDF是什么四邊形?(原創(chuàng))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,是某交通地圖路線,其中AB∥DE,測(cè)得∠B=130°,∠DCF=105°,則∠C的度數(shù)為( )
A. 155° B. 125°
C.140° D.135°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
在△ABC中,∠C=90°,AC=12,BC=5,現(xiàn)在AC為軸旋轉(zhuǎn)一周得到一個(gè)圓錐。則該圓錐的側(cè)面積為 ( )
(A)130π (B)90π (C)25π (D)65π
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在平面直角坐標(biāo)系中,坐標(biāo)原點(diǎn)為O,A點(diǎn)坐標(biāo)為(-4,0),B點(diǎn)坐標(biāo)為(1,0),以AB的中點(diǎn)P為圓心,AB為直徑作⊙P與y軸的負(fù)半軸交于點(diǎn)C.
(1)求經(jīng)過(guò)A、B、C三點(diǎn)的拋物線對(duì)應(yīng)的函數(shù)表達(dá)式;
(2)設(shè)M為(1)中拋物線的頂點(diǎn),試說(shuō)明直線MC與⊙P的位置關(guān)系,并證明你的結(jié)論;
(3)在第二象限中是否存在的一點(diǎn)Q,使得以A,O,Q為頂點(diǎn)的三角形與△OBC相似。若存在,請(qǐng)求出所有滿足的Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。(根據(jù)2007煙臺(tái)試卷改編)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com