【題目】如圖,在平面直角坐標(biāo)系中,矩形AOBC的邊AO在x軸的負(fù)半軸上,邊OB在y軸的負(fù)半軸上.且AO=12,OB=9.拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A和點(diǎn)B.
(1)求拋物線的表達(dá)式;
(2)在第二象限的拋物線上找一點(diǎn)M,連接AM,BM,AB,當(dāng)△ABM面積最大時(shí),求點(diǎn)M的坐標(biāo);
(3)點(diǎn)D是線段AO上的動(dòng)點(diǎn),點(diǎn)E是線段BO上的動(dòng)點(diǎn),點(diǎn)F是射線AC上的動(dòng)點(diǎn),連接EF,DF,DE,BD,且EF是線段BD的垂直平分線.當(dāng)CF=1時(shí).
①直接寫出點(diǎn)D的坐標(biāo) ;
②若△DEF的面積為30,當(dāng)拋物線y=﹣x2+bx+c經(jīng)過平移同時(shí)過點(diǎn)D和點(diǎn)E時(shí),請直接寫出此時(shí)的拋物線的表達(dá)式 .
【答案】(1)y=﹣x2﹣x﹣9;(2)M(﹣6,31.5);(3)①(﹣12+3,0)或(﹣3,0),②y=﹣x2﹣x﹣4
【解析】
(1)利用待定系數(shù)法把問題轉(zhuǎn)化為解方程組即可解決問題.
(2)如圖1中,設(shè)M(m,﹣m2﹣m﹣9),根據(jù)S△ABM=S△ACM+S△MBC﹣S△ACB構(gòu)建二次函數(shù),利用二次函數(shù)的性質(zhì)解決問題即可.
(3)①分兩種情形:如圖2中,當(dāng)點(diǎn)F在AC的延長線設(shè)時(shí),連接DF,FB.設(shè)D(m,0).根據(jù)FD=FB,構(gòu)建方程求解.當(dāng)點(diǎn)F在線段AC上時(shí),同法可得.
②根據(jù)三角形的面積求出D,E的坐標(biāo),再利用待定系數(shù)法解決問題即可.
解:(1)由題意A(﹣12,0),B(0,﹣9),
把A,B的坐標(biāo)代入y=﹣x2+bx+c,
得到,
解得:,
∴拋物線的解析式為y=﹣x2﹣x﹣9.
(2)如圖1中,設(shè)M(m,﹣m2﹣m﹣9),
S△ABM=S△ACM+S△MBC﹣S△ACB
=×9×(m+12)+×12×(﹣m2﹣m﹣9+9)﹣×12×9
=﹣6m2﹣72m
=﹣6(m+6)2+216,
∵﹣6<0,
∴m=﹣6時(shí),△ABM的面積最大,此時(shí)M(﹣6,31.5).
(3)①如圖2中,當(dāng)點(diǎn)F在AC的延長線設(shè)時(shí),連接DF,FB.設(shè)D(m,0).
∵EF垂直平分線段BD,
∴FD=FB,
∵F(﹣12,﹣10),B(0,﹣9),
∴102+(m+12)2=122+12,
∴m=﹣12﹣3(舍棄)或﹣12+3,
∴D(﹣12+3,0).
當(dāng)點(diǎn)F在線段AC上時(shí),同法可得D(﹣3,0),
綜上所述,滿足條件的點(diǎn)D的坐標(biāo)為(﹣12+3,0)或(﹣3,0).
故答案為(﹣12+3,0)或(﹣3,0).
②由①可知∵△EF的面積為30,
∴D(﹣3,0),E(0,﹣4),
把D,E代入y=﹣x2+b′x+c′,
可得,
解得:,
∴拋物線的解析式為y=﹣x2﹣x﹣4.
故答案為:y=﹣x2﹣x﹣4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的直徑,點(diǎn)是上一點(diǎn),的平分線交于點(diǎn),過點(diǎn)作交的延長線于點(diǎn).
(1)求證:是的切線;
(2)過點(diǎn)作于點(diǎn),連接.若,,求的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把一張長方形紙片,沿對角線折疊,點(diǎn)的對應(yīng)點(diǎn)為,與相交于點(diǎn),則下列結(jié)論中不一定正確的是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,∠CBG=∠A,CD為直徑,OC與AB相交于點(diǎn)E,過點(diǎn)E作EF⊥BC,垂足為F,延長CD交GB的延長線于點(diǎn)P,連接BD.
(1)求證:PG與⊙O相切;
(2)若=,求的值;
(3)在(2)的條件下,若⊙O的半徑為8,PD=OD,求OE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組織了一次比賽,甲、乙兩隊(duì)各有5人參加比賽,兩隊(duì)每人的比賽成績(單位:分)如下:
甲隊(duì):7,8,9,6,10
乙隊(duì):10,9,5,8,8
(1)甲隊(duì)成績的中位數(shù)是 分,乙隊(duì)成績的眾數(shù)是 分;
(2)計(jì)算乙隊(duì)的平均成績和方差;
(3)已知甲隊(duì)成績的方差為S2甲=2,則成績波動(dòng)較大的是 隊(duì).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,點(diǎn),點(diǎn)在軸正半軸上,以為一邊作等腰直角,使得點(diǎn)在第一象限.
(1)求出所有符合題意的點(diǎn)的坐標(biāo);
(2)在內(nèi)部存在一點(diǎn),使得之和最小,請求出這個(gè)和的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+6的圖像開口向下,與x軸交于點(diǎn)A(-6,0)和點(diǎn)B(2,0),與y軸交于點(diǎn)C,點(diǎn)P是該函數(shù)圖像上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)C重合)
(1) 求二次函數(shù)的關(guān)系式;
(2)如圖1當(dāng)點(diǎn)P是該函數(shù)圖像上一個(gè)動(dòng)點(diǎn)且在線段的上方,若△PCA的面積為12,求點(diǎn)P的坐標(biāo);
(3)如圖2,該函數(shù)圖像的頂點(diǎn)為D,在該函數(shù)圖像上是否存在點(diǎn)E,使得∠EAB=2∠DAC,若存在請直接寫出點(diǎn)E的坐標(biāo);若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車沿同一條道路從地出發(fā)向1200外的地輸送緊急物資,甲在途中休息了3小時(shí),休息前后的速度不同,最后兩車同時(shí)到達(dá)地,如圖甲、乙兩車到地的距離(千米)與乙車行駛時(shí)間(小時(shí))之間的函數(shù)圖象.
(1)甲車休息前的行駛速度為 千米/時(shí),乙車的速度為 千米/時(shí);
(2)當(dāng)9≤≤15,求甲車的行駛路程與之間的函數(shù)關(guān)系式;
(3)直接寫出甲出發(fā)多長時(shí)間與乙在途中相遇.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在半徑為的中,是直徑,點(diǎn)是中點(diǎn),連接,交于點(diǎn),弦于點(diǎn),交于點(diǎn),過的切線交的延長線于點(diǎn),.
(1)求的長;
(2)連接,求證:;
(3)當(dāng)點(diǎn)在上運(yùn)動(dòng)時(shí),連接,,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com