【題目】如圖,四邊形ABCD的兩條對(duì)角線(xiàn)ACBD互相垂直, A1B1C1D1, 是四邊形ABCD的中點(diǎn)四邊形,如果AC=8, BD=10,那么四邊形A1B1C1D1,的面積為_________.

【答案】20

【解析】

此題要能夠根據(jù)三角形的中位線(xiàn)定理證明四邊形A1B1C1D1是矩形,從而根據(jù)矩形的面積進(jìn)行計(jì)算.

解:∵A1,B1,C1D1是四邊形ABCD的中點(diǎn)四邊形,且AC=8BD=10

A1D1是△ABD的中位線(xiàn)

A1D1=0.5BD=0.5×10=5

同理可得A1B1=0.5AC=4

根據(jù)三角形的中位線(xiàn)定理,可以證明四邊形A1B1C1D1是矩形

那么四邊形A1B1C1D1的面積為A1D1×A1B1=5×4=20,故答案為:20.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)探索材料1(填空):

數(shù)軸上表示數(shù)和數(shù)的兩點(diǎn)之間的距離等于.例如數(shù)軸上表示數(shù)25的兩點(diǎn)距離為 ;數(shù)軸上表示數(shù)3-1的兩點(diǎn)距離為 ;則的意義可理解為數(shù)軸上表示數(shù) 這兩點(diǎn)的距離;的意義可理解為數(shù)軸上表示數(shù) 這兩點(diǎn)的距離;

(2)探索材料2(填空):

①如圖1,在工廠(chǎng)的一條流水線(xiàn)上有兩個(gè)加工點(diǎn),要在流水線(xiàn)上設(shè)一個(gè)材料供應(yīng)點(diǎn)往兩個(gè)加工點(diǎn)輸送材料,材料供應(yīng)點(diǎn)應(yīng)設(shè)在 才能使的距離與的距離之和最?

②如圖2,在工廠(chǎng)的一條流水線(xiàn)上有三個(gè)加工點(diǎn)要在流水線(xiàn)上設(shè)一個(gè)材料供應(yīng)點(diǎn)往三個(gè)加工點(diǎn)輸送材料,材料供應(yīng)點(diǎn)應(yīng)設(shè)在 才能使三點(diǎn)的距離之和最?

③如圖3,在工廠(chǎng)的一條流水線(xiàn)上有四個(gè)加工點(diǎn),要在流水線(xiàn)上設(shè)一個(gè)材料供應(yīng)點(diǎn)往四個(gè)加工點(diǎn)輸送材料,材料供應(yīng)點(diǎn)應(yīng)設(shè)在 才能使四點(diǎn)的距離之和最小?

(3)結(jié)論應(yīng)用(填空):

①代數(shù)式的最小值是 ,此時(shí)的范圍是 ;

②代數(shù)式的最小值是 ,此時(shí)的值為

③代數(shù)式的最小值是 ,此時(shí)的范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小淇在說(shuō)明 直角三角形斜邊上的中線(xiàn)等于斜邊的一半是真命題,部分思路如下:如圖,在∠ACB內(nèi)做∠BCD=∠BCDAB相交于點(diǎn)D,…….請(qǐng)根據(jù)以上思路,完成證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C=90°,BE平分∠ABCAC于點(diǎn)E,作EDEBAB于點(diǎn)D,OBED的外接圓.

(1)求證:AC是⊙O的切線(xiàn);

(2)已知⊙O的半徑為2.5,BE=4,求BC,AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,D、E分別是邊AB、BC上的點(diǎn),AECD交于點(diǎn)F,且∠CFE=∠B。

1)如圖1,求證:∠AEC=∠CDB;

2)如圖2,過(guò)點(diǎn)CCGAC,交AB于點(diǎn)G,CDCB,∠ACD =∠CAB-∠B,求證:ACGC;

3)如圖3,在(2)的條件下,CECDAE,CG,求線(xiàn)段BC的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC中,AB=10,AC=2,B=30°,則ABC的面積等于_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,已知點(diǎn)B的坐標(biāo)為(6,4).

(1)請(qǐng)用直尺(不帶刻度)和圓規(guī)作一條直線(xiàn)AC,它與x軸和y軸的正半軸分別交于點(diǎn)A和點(diǎn)C,且使∠ABC=90°,ABCAOC的面積相等.(作圖不必寫(xiě)作法,但要保留作圖痕跡.)

(2)問(wèn):(1)中這樣的直線(xiàn)AC是否唯一?若唯一,請(qǐng)說(shuō)明理由;若不唯一,請(qǐng)?jiān)趫D中畫(huà)出所有這樣的直線(xiàn)AC,并寫(xiě)出與之對(duì)應(yīng)的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】3分)以下四種沿AB折疊的方法中,不一定能判定紙帶兩條邊線(xiàn)a,b互相平行的是( )

A. 如圖1,展開(kāi)后測(cè)得∠1=∠2

B. 如圖2,展開(kāi)后測(cè)得∠1=∠2∠3=∠4

C. 如圖3,測(cè)得∠1=∠2

D. 如圖4,展開(kāi)后再沿CD折疊,兩條折痕的交點(diǎn)為O,測(cè)得OA=OB,OC=OD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某次“小學(xué)生書(shū)法比賽”的成績(jī)情況,隨機(jī)抽取了30名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)情況繪成如圖所示的頻數(shù)分布直方圖,己知成績(jī)x(單位:分)均滿(mǎn)足“50≤x<100”.根據(jù)圖中信息回答下列問(wèn)題:

(1)圖中a的值為   ;

(2)若要繪制該樣本的扇形統(tǒng)計(jì)圖,則成績(jī)x在“70≤x<80”所對(duì)應(yīng)扇形的圓心角度數(shù)為   度;

(3)此次比賽共有300名學(xué)生參加,若將“x80”的成績(jī)記為“優(yōu)秀”,則獲得“優(yōu)秀“的學(xué)生大約有   人:

(4)在這些抽查的樣本中,小明的成績(jī)?yōu)?2分,若從成績(jī)?cè)凇?0≤x<60”和“90≤x<100”的學(xué)生中任選2人,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法,求小明被選中的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案