【題目】已知:如圖,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,點B,D,E在同一直線上,AF⊥BE于點F,那么線段BE,CE,AF三者之間的數(shù)量關系是

【答案】BE=CE+2AF
【解析】解:∵△ACB和△DAE均為等腰直角三角形, ∴AB=AC,AD=AE,∠BAC=∠DAE=90°,∠ADE=∠AED=45°,
∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,
即∠BAD=∠CAE,
在△ABD和△ACE中,

∴△ABD≌△ACE,
∴BD=CE,∠ADB=∠AEC,
∵點A,D,E在同一直線上,
∴∠ADB=180﹣45=135°,
∴∠AEC=135°,
∴∠BEC=∠AEC﹣∠AED=135﹣45=90°;
∵∠DAE=90°,AD=AE,AF⊥DE,
∴AF=DF=EF,
∴DE=DF+EF=2AF,
∴BE=BD+DE=CE+2AF.
所以答案是:BE=CE+2AF.
【考點精析】通過靈活運用等腰直角三角形,掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°即可以解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】對于拋物線y=﹣2(x﹣1)2+3,下列判斷正確的是(
A.拋物線的開口向上
B.拋物線的頂點坐標是(﹣1.3)
C.當x=3時,y>0
D.方程﹣2(x﹣1)2+3=0的正根在2與3之間

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正比例函數(shù)y=x與反比例函數(shù)y= 的圖像交于點A、點C,AB⊥x軸于點B,CD⊥x軸于點D,則四邊形ABCD的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在等式a3·a2·( )=a11中,括號里面人代數(shù)式應當是 ( )
A.a7
B.a8
C.a6
D.a3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將拋物線y=2x2向右平移2個單位,能得到的拋物線是(
A.y=2x2+2
B.y=2x2﹣2
C.y=2(x+2)2
D.y=2(x﹣2)2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算正確的是( 。
A.x5+x5=x10
B.(x33=x6
C.x3x2=x5
D.x6﹣x3=x3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在長方形OABC中,O為平面直角坐標系的原點,點A坐標為(a,0),點C的坐標為(0,b),且a,b滿足|a﹣4|+ =0,點B在第一象限內(nèi),點P從原點出發(fā),以每秒2個單位長度的速度沿著O﹣C﹣B﹣A﹣O的線路移動.

(1)點B的坐標為 , 當點P移動3.5秒時,點P的坐標
(2)在移動過程中,當點P到x軸的距離為4個單位長度時,求點P移動的時間;
(3)在移動過程中,當△OBP的面積是10時,求點P移動的時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】八年級一班數(shù)學興趣小組在一次活動中進行了探究試驗活動,請你和他們一起活動吧.
(1)【探究與發(fā)現(xiàn)】 如圖1,AD是△ABC的中線,延長AD至點E,使ED=AD,連接BE,寫出圖中全等的兩個三角形
(2)【理解與應用】 填空:如圖2,EP是△DEF的中線,若EF=5,DE=3,設EP=x,則x的取值范圍是
(3)已知:如圖3,AD是△ABC的中線,∠BAC=∠ACB,點Q在BC的延長線上,QC=BC,求證:AQ=2AD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,∠B=∠C,AB=16厘米,BC=12厘米,點D為AB的中點.如果點P在線段BC上以每秒4厘米的速度由B點向C點運動,同時,點Q在線段CA上以每秒a厘米的速度由C點向A點運動,設運動時間為t(秒)(0≤t≤3).

(1)用的代數(shù)式表示PC的長度;
(2)若點P、Q的運動速度相等,經(jīng)過1秒后,△BPD與△CQP是否全等,請說明理由;
(3)若點P、Q的運動速度不相等,當點Q的運動速度a為多少時,能夠使△BPD與△CQP全等?

查看答案和解析>>

同步練習冊答案