【題目】如圖,⊙ORtABC的外接圓,AB為直徑,∠ABC=30°,CD是⊙O的切線,EAC延長(zhǎng)線上一點(diǎn),EDABF.

(1)判斷DCE的形狀;

(2)設(shè)⊙O的半徑為1,且OF=,求證:DCE≌△OCB.

【答案】(1)CDE為等腰三角形;(2)證明見(jiàn)解析.

【解析】試題分析:(1)ABC=30°可得BAC=60°,結(jié)合DEAB,可得AED的度數(shù);根據(jù)弦切角定理可得DCB=60°,再結(jié)合ACB=90°,從而可得DCE的度數(shù);

(2)由(1)的證明過(guò)程可得ABC=∠OCB=∠DCE=∠CED=30°,要證明BOC≌△EDC,只要證明BC=CE,接下來(lái)由圓半徑為1可得AB的長(zhǎng),結(jié)合含30度角直角三角形的性質(zhì)以及勾股定理可得AC、BC的長(zhǎng),在Rt△AEF中,先求得AF的長(zhǎng),再利用含30度角直角三角形的性質(zhì)可得AE的長(zhǎng),繼而得到CE的長(zhǎng),從而可證CDE≌△COB..

(1)解:∵∠ABC=30°,

∴∠BAC=60°.

又∵OA=OC,

∴△AOC是正三角形.

又∵CD是切線,

∴∠OCD=90°.

∴∠DCE=180°﹣60°﹣90°=30°.

EDABF,

∴∠CED=90°﹣BAC=30°.

CDE為等腰三角形.

(2)證明:∵CD是⊙O的切線,

∴∠OCD=90°,

∵∠BAC=60°,AO=CO,

∴∠OCA=60°,∵∠DCE=30°.

A,C,E三點(diǎn)同線

ABC中,

AB=2,AC=AO=1,

BC==

OF=

AF=AO+OF=

又∵∠AEF=30°,

AE=2AF=+1,

CE=AE﹣AC==BC,

而∠OCB=ACB﹣ACO=90°﹣60°=30°=ABC;

CDE≌△COB.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A、B、C均在O上,過(guò)點(diǎn)C作O的切線交AB的延長(zhǎng)線于點(diǎn)D,∠ACB=45°,∠AOC=150°.

(1)求證:CD=CB;

(2)⊙O的半徑為,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)實(shí)踐課上,同學(xué)們分組測(cè)量教學(xué)樓前國(guó)旗桿的高度.小澤同學(xué)所在的組先設(shè)計(jì)了測(cè)量方案,然后開(kāi)始測(cè)量了.他們?nèi)M分成兩個(gè)測(cè)量隊(duì),分別負(fù)責(zé)室內(nèi)測(cè)量和室外測(cè)量(如圖).室內(nèi)測(cè)量組來(lái)到教室內(nèi)窗臺(tái)旁,在點(diǎn)E處測(cè)得旗桿頂部A的仰角α45°,旗桿底部B的俯角β60°. 室外測(cè)量組測(cè)得BF的長(zhǎng)度為5.則旗桿AB=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一商店銷售某種商品,平均每天可售出20件,每件盈利40元.為了擴(kuò)大銷售,增加盈利,該店采取了降價(jià)措施.在每件盈利不少于25元的前提下,經(jīng)過(guò)一段時(shí)間銷售,發(fā)現(xiàn)銷售單價(jià)每降低1元,平均每天可多售出2件.

1)若降價(jià)4元,則平均每天銷售數(shù)量為   件;

2)當(dāng)每件商品降價(jià)多少元時(shí),該商店每天銷售利潤(rùn)為1050元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1876年,美國(guó)總統(tǒng)Garfield用如圖所示的兩個(gè)全等的直角三角形證明了勾股定理,若圖中,,,則下面結(jié)論錯(cuò)誤的是( )

A. B. C. D. 是等腰直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某居民小區(qū)為了綠化小區(qū)環(huán)境,建設(shè)和諧家園,準(zhǔn)備將一塊周長(zhǎng)為76米的長(zhǎng)方形空地,設(shè)計(jì)成長(zhǎng)和寬分別相等的9塊小長(zhǎng)方形,如圖所示,計(jì)劃在空地上種上各種花卉,經(jīng)市場(chǎng)預(yù)測(cè),綠化每平方米空地造價(jià)210元,請(qǐng)計(jì)算,要完成這塊綠化工程,預(yù)計(jì)花費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的袋子里有1個(gè)紅球,1個(gè)黃球和n個(gè)白球,它們除顏色外其余都相同.

(1)從這個(gè)袋子里摸出一個(gè)球,記錄其顏色,然后放回,搖均勻后,重復(fù)該實(shí)驗(yàn),經(jīng)過(guò)大量實(shí)驗(yàn)后,發(fā)現(xiàn)摸到白球的頻率穩(wěn)定于0.5左右,求n的值;

(2)在(1)的條件下,先從這個(gè)袋中摸出一個(gè)球,記錄其顏色,放回,搖均勻后,再?gòu)拇忻鲆粋(gè)球,記錄其顏色.請(qǐng)用畫樹(shù)狀圖或者列表的方法,求出先后兩次摸出不同顏色的兩個(gè)球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=3,AD=9,設(shè)AE=x.將ABE沿BE翻折得到ABE,點(diǎn)A落在矩形ABCD的內(nèi)部,且AA′G=90°,若以點(diǎn)A'、G、C為頂點(diǎn)的三角形是直角三角形,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖1,長(zhǎng)方體的長(zhǎng)為4cm,寬為3cm,高為12cm.求該長(zhǎng)方體中能放入木棒的最大長(zhǎng)度;

2)如圖2,長(zhǎng)方體的長(zhǎng)為4cm,寬為3cm,高為12cm.現(xiàn)有一只螞蟻從點(diǎn)A處沿長(zhǎng)方體的表面爬到點(diǎn)G處,求它爬行的最短路程.

3)若將題中的長(zhǎng)方體換成透明圓柱形容器(容器厚度忽略不計(jì))的高為12cm,底面周長(zhǎng)為10cm,在容器內(nèi)壁離底部3cm的點(diǎn)B處有一飯粒,此時(shí)一只螞蟻正好在容器外壁且離容器上沿3cm的點(diǎn)A處.求螞蟻吃到飯粒需要爬行的最短路程是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案