【題目】1)如圖1,長(zhǎng)方體的長(zhǎng)為4cm,寬為3cm,高為12cm.求該長(zhǎng)方體中能放入木棒的最大長(zhǎng)度;

2)如圖2,長(zhǎng)方體的長(zhǎng)為4cm,寬為3cm,高為12cm.現(xiàn)有一只螞蟻從點(diǎn)A處沿長(zhǎng)方體的表面爬到點(diǎn)G處,求它爬行的最短路程.

3)若將題中的長(zhǎng)方體換成透明圓柱形容器(容器厚度忽略不計(jì))的高為12cm,底面周長(zhǎng)為10cm,在容器內(nèi)壁離底部3cm的點(diǎn)B處有一飯粒,此時(shí)一只螞蟻正好在容器外壁且離容器上沿3cm的點(diǎn)A處.求螞蟻吃到飯粒需要爬行的最短路程是多少?

【答案】113cm;(2)最短路程為cm;(313cm

【解析】

1)利用勾股定理直接求出木棒的最大長(zhǎng)度即可.

2)將長(zhǎng)方體展開,利用勾股定理解答即可;

3)將容器側(cè)面展開,建立A關(guān)于EF的對(duì)稱點(diǎn)A′,根據(jù)兩點(diǎn)之間線段最短可知A′B的長(zhǎng)度即為所求.

解:(1)由題意得:如圖,該長(zhǎng)方體中能放入木棒的最大長(zhǎng)度是:

;

2)①如圖,

②如圖,,

如圖,,

∴最短路程為;

3高為,底面周長(zhǎng)為,在容器內(nèi)壁離容器底部的點(diǎn)處有一飯粒,

此時(shí)螞蟻正好在容器外壁,離容器上沿與飯粒相對(duì)的點(diǎn)處,

,

將容器側(cè)面展開,作關(guān)于的對(duì)稱點(diǎn)

連接,則即為最短距離,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙ORtABC的外接圓,AB為直徑,∠ABC=30°,CD是⊙O的切線,EAC延長(zhǎng)線上一點(diǎn),EDABF.

(1)判斷DCE的形狀;

(2)設(shè)⊙O的半徑為1,且OF=,求證:DCE≌△OCB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,點(diǎn)...在射線上,點(diǎn)...在射線上;...均為等邊三角形,若,則的邊長(zhǎng)為()

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙C的半徑為2,圓外一點(diǎn)O滿足OC=3.5,點(diǎn)P為⊙C上一動(dòng)點(diǎn),經(jīng)過點(diǎn)O的直線l上有兩點(diǎn)A、B,且OA=OB,∠APB=90°,l不經(jīng)過點(diǎn)C,則AB的最小值為(

A. 2 B. 2.5 C. 3 D. 3.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A1,A2,A3都在x軸上,點(diǎn)B1,B2,B3都在直線y=x上,OA1=1,且△B1A1A2,B2A2A3B3A3A4,…Bn A n A n+1分別是以A1,A2A3,…An為直角頂點(diǎn)的等腰直角三角形,則△B10A10A11的面積是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知正比例函數(shù)與一次函數(shù)的圖象交于點(diǎn),設(shè)軸上有一點(diǎn),過點(diǎn)軸的垂線(垂線位于點(diǎn)的右側(cè))分別交的圖象與點(diǎn)、,連接,若,則的面積為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,,連接ED,BD,延長(zhǎng)AE交BD的延長(zhǎng)線于點(diǎn)M,過點(diǎn)D作⊙O的切線交AB的延長(zhǎng)線于點(diǎn)C.

(1)若OA=CD=2,求陰影部分的面積;

(2)求證:DE=DM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,A、B兩城市相距100km.現(xiàn)計(jì)劃在這兩座城市間修筑一條高速公路(即線段AB),經(jīng)測(cè)量,森林保護(hù)中心P在A城市的北偏東30°和B城市的北偏西45°的方向上.已知森林保護(hù)區(qū)的范圍在以P點(diǎn)為圓心,50km為半徑的圓形區(qū)域內(nèi).請(qǐng)問計(jì)劃修筑的這條高速公路會(huì)不會(huì)穿越保護(hù)區(qū).為什么?(參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,A=40°,ABC的外角∠CBD的平分線BEAC的延長(zhǎng)線于點(diǎn)E.

(1)求∠CBE的度數(shù);

(2)過點(diǎn)DDFBE,交AC的延長(zhǎng)線于點(diǎn)F,求∠F的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案