【題目】已知,如圖1,拋物線過(guò)三點(diǎn),頂點(diǎn)為點(diǎn),連接,點(diǎn)為拋物線對(duì)稱軸上一點(diǎn),連接,直線過(guò)點(diǎn)兩點(diǎn).
(1)求拋物線及直線的函數(shù)解析式;
(2)求的最小值;
(3)求證:∽;
(4)如圖2,若點(diǎn)是在拋物線上且位于第一象限內(nèi)的一動(dòng)點(diǎn),請(qǐng)直接寫(xiě)出面積的最大值及此時(shí)點(diǎn)的坐標(biāo).
【答案】(1),;(2);(3)詳見(jiàn)解析;(4)(4),此時(shí).
【解析】
(1)根據(jù)A,B坐標(biāo)用兩點(diǎn)式設(shè)出拋物線解析式,再把C點(diǎn)坐標(biāo)代入,求出解析式,然后再根據(jù)B,C坐標(biāo)求出直線的函數(shù)解析式即可;
(2)關(guān)于拋物線的對(duì)稱軸對(duì)稱,則當(dāng)的值最小時(shí),直線與拋物線的對(duì)稱軸的交點(diǎn)即為點(diǎn),此時(shí),根據(jù)B,C坐標(biāo)求出BC長(zhǎng)即可;
(3)作軸于點(diǎn),設(shè)拋物線的對(duì)稱軸與軸交于點(diǎn),求出CD和AC長(zhǎng),得到,即可證明;
(4)設(shè)M點(diǎn)為,則N點(diǎn)為,表示出△MBC的面積,求出最大值即可.
(1)∵拋物線過(guò),
∴可設(shè)拋物線的函數(shù)解析式為,
把代入得,,
,
∴拋物線的解析式為,
把代入得,
,
解得,,
∴直線的解析式為;
(2)關(guān)于拋物線的對(duì)稱軸對(duì)稱,
∴當(dāng)的值最小時(shí),直線與拋物線的對(duì)稱軸的交點(diǎn)即為點(diǎn),
∴此時(shí),
,
∴的最小值是;
(3)如圖3,作軸于點(diǎn),設(shè)拋物線的對(duì)稱軸與軸交于點(diǎn),
∵拋物線的對(duì)稱軸為直線,
∴把代入得,
∴,
,,
又,
,
,
∽;
(4)過(guò)點(diǎn)M作MN⊥x軸,交CB于點(diǎn)N,
∵M在拋物線上,N在CB上,
∴設(shè)M點(diǎn)為,則N點(diǎn)為,
則
則當(dāng)時(shí),有最大值,
此時(shí).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,△ABC是一張等腰直角三角形彩色紙,AC=BC,將斜邊上的高CD五等分,然后裁出4張寬度相等的長(zhǎng)方形紙條.若用這4張紙條剛好可以為一幅正方形美術(shù)作品鑲邊(紙條不重疊),如圖2,則正方形美術(shù)作品與鑲邊后的作品的面積之比為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD內(nèi)有一折線段,其中AE⊥EF,EF⊥FC,并且AE=6,EF=8,FC=10,則正方形的邊長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,一次函數(shù)的圖象與反比例函數(shù)()的圖象交于點(diǎn).軸于點(diǎn),軸于點(diǎn). 一次函數(shù)的圖象分別交軸、軸于點(diǎn)、點(diǎn),且,.
(1)求點(diǎn)的坐標(biāo);
(2)求一次函數(shù)與反比例函數(shù)的解析式;
(3)根據(jù)圖象寫(xiě)出當(dāng)取何值時(shí),一次函數(shù)的值小于反比例函數(shù)的值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,所有正三角形的一邊平行于軸,一頂點(diǎn)在軸上,從內(nèi)到外,它們的邊長(zhǎng)依次為2,4,6,8,…,頂點(diǎn)依次用表示,其中與軸、底邊與與、…均相距一個(gè)單位,則頂點(diǎn)的坐標(biāo)是__________,的坐標(biāo)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C為線段AB上一點(diǎn),△ACM與△CBN都是等邊三角形,AN與MB交于P.
(1)求證:AN=BM;
(2)連接CP,求證:CP平分∠APB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC=2,∠BAC=120°,點(diǎn)D、E都在邊BC上,∠DAE=60°.若BD=2CE,則DE的長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以G(0,1)為圓心,半徑為2的圓與x軸交于A、B兩點(diǎn),與y軸交于C、D兩點(diǎn),點(diǎn)E為⊙G上一動(dòng)點(diǎn),CF⊥AE于F.當(dāng)點(diǎn)E從點(diǎn)B出發(fā)順時(shí)針運(yùn)動(dòng)到點(diǎn)D時(shí),點(diǎn)F所經(jīng)過(guò)的路徑長(zhǎng)為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=6,AB=10,⊙C與AB相切于點(diǎn)D,延長(zhǎng)AC到點(diǎn)E,使CE=AC,連接EB.過(guò)點(diǎn)E作BE的垂線,交⊙C于點(diǎn)P、Q,交BA的延長(zhǎng)線于點(diǎn)F.
(1)求AD的長(zhǎng);
(2)求證:EB與⊙C相切;
(3)求線段PQ的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com