【題目】已知二次函數(shù)的圖象以為頂點(diǎn),且過(guò)點(diǎn)

1)求該函數(shù)的關(guān)系式;

2)求該函數(shù)圖象與坐標(biāo)軸的交點(diǎn)坐標(biāo);

【答案】1;(2)該函數(shù)的圖像與坐標(biāo)軸的交點(diǎn)是,

【解析】

1)根據(jù)圖象的頂點(diǎn)A1,4)來(lái)設(shè)該二次函數(shù)的關(guān)系式,然后將點(diǎn)B代入,即用待定系數(shù)法來(lái)求二次函數(shù)解析式;

2)令y0,然后將其代入函數(shù)關(guān)系式,解一元二次方程即可,再令x=0,求出與y軸交點(diǎn).

1)由頂點(diǎn)A14),可設(shè)二次函數(shù)關(guān)系式為yax124a0).

∵二次函數(shù)的圖象過(guò)點(diǎn)B25),

∴點(diǎn)B2,5)滿足二次函數(shù)關(guān)系式,

5a2124,

解得a1

∴二次函數(shù)的關(guān)系式是yx124;

2)令x0,則y01243,

∴圖象與y軸的交點(diǎn)坐標(biāo)為(0,3);

y0,則0x124

解得x13,x21

故圖象與x軸的交點(diǎn)坐標(biāo)是(3,0)、(1,0).

答:圖象與y軸的交點(diǎn)坐標(biāo)為(03),與x軸的交點(diǎn)坐標(biāo)是(3,0)、(1,0).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都是一個(gè)單位長(zhǎng)度,在平面直角坐標(biāo)系內(nèi),△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,4),B(1,1),C(3,1).

(1)畫(huà)出△ABC關(guān)于x軸對(duì)稱的△A1B1C1

(2)畫(huà)出△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后的△A2B2C2;

(3)在(2)的條件下,求線段BC掃過(guò)的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)將寬為3cm、長(zhǎng)為ncm的長(zhǎng)方形(n為正整數(shù))分割成若干小正方形,要求小正方形的邊長(zhǎng)是正整數(shù)且個(gè)數(shù)最少.例如,當(dāng)n5cm時(shí),此長(zhǎng)方形可分割成如右圖的4個(gè)小正方形.

請(qǐng)回答下列問(wèn)題:

1n16時(shí),可分割成幾個(gè)小正方形?

2)當(dāng)長(zhǎng)方形被分割成20個(gè)小正方形時(shí),求n所有可能的值;

3)一般地,n3時(shí),此長(zhǎng)方形可分割成多少個(gè)小正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,正方形ABCD,∠EAF45°

1)如圖1,當(dāng)點(diǎn)EF分別在邊BC,CD上,連接EF,求證:EFBE+DF

2)如圖2,點(diǎn)M,N分別在邊ABCD上,且BNDM,當(dāng)點(diǎn)E,F分別在BM,DN上,連接EF,請(qǐng)?zhí)骄烤段EF,BE,DF之間滿足的數(shù)量關(guān)系,并加以證明;

3)如圖3,當(dāng)點(diǎn)E,F分別在對(duì)角線BD,邊CD上,若FC2,則BE的長(zhǎng)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,邊長(zhǎng)為的正的邊在直線上,兩條距離為的平行直線垂直于直線,同時(shí)向右移動(dòng)(的起始位置在點(diǎn)),速度均為每秒個(gè)單位,運(yùn)動(dòng)時(shí)間為(秒),直到到達(dá)點(diǎn)停止,在向右移動(dòng)的過(guò)程中,記夾在間的部分的面積為,則關(guān)于的函數(shù)圖象大致為(  )

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A,B兩點(diǎn)的坐標(biāo)分別為(20),(0,2),⊙C的圓心坐標(biāo)為(-1,0),半徑為1.D是⊙C上的一個(gè)動(dòng)點(diǎn),線段DAy軸交于點(diǎn)E ,則ABE面積的最小值是 _____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,以AB為直徑作半圓.點(diǎn)D在弧上(不與A,C重合),點(diǎn)EAB上,且點(diǎn)D.E關(guān)于AC對(duì)稱. 給出下列結(jié)論:①若∠ACE=20°,則∠BAC=25°;②若BC=3,AC=4,則;給出下列判斷,正確的是(

A.①②都對(duì)B.①②都錯(cuò)C.①對(duì)②錯(cuò)D.①錯(cuò)②對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:如果一個(gè)分式能化成一個(gè)整式與一個(gè)分子為常數(shù)的分式的和的形式,則稱這個(gè)分式為和諧分式.如: ,則和諧分式

(1)下列分式中,屬于和諧分式的是_____(填序號(hào));

;②;③;④

(2)和諧分式化成一個(gè)整式與一個(gè)分子為常數(shù)的分式的和的形式為:_______(要寫(xiě)出變形過(guò)程);

(3)應(yīng)用:先化簡(jiǎn),并求x取什么整數(shù)時(shí),該式的值為整數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:若拋物線與拋物線的開(kāi)口大小相同,方向相反,且拋物線經(jīng)過(guò)的頂點(diǎn),我們稱拋物線的“友好拋物線”.

1)若的表達(dá)式為,求的“友好拋物線”的表達(dá)式;

2)已知拋物線的“友好拋物線”.求證:拋物線也是的“友好拋物線”;

3)平面上有點(diǎn),拋物線的“友好拋物線”,且拋物線的頂點(diǎn)在第一象限,縱坐標(biāo)為2,當(dāng)拋物線與線段沒(méi)有公共點(diǎn)時(shí),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案