【題目】如圖,一枚棋子放在七角棋盤的第0號(hào)角,現(xiàn)依逆時(shí)針方向移動(dòng)這枚棋子,其各步依次移動(dòng)1,2,3,…,n個(gè)角,如第一步從0號(hào)角移動(dòng)到第1號(hào)角,第二步從第1號(hào)角移動(dòng)到第3號(hào)角,第三步從第3號(hào)角移動(dòng)到第6號(hào)角,….若這枚棋子不停地移動(dòng)下去,則這枚棋子永遠(yuǎn)不能到達(dá)的角的個(gè)數(shù)是( )
A.0 B.1 C.2 D.3
【答案】D
【解析】
試題因棋子移動(dòng)了k次后走過的總格數(shù)是1+2+3+…+k=k(k+1),然后根據(jù)題目中所給的第k次依次移動(dòng)k個(gè)頂點(diǎn)的規(guī)則,可得到不等式最后求得解.
因棋子移動(dòng)了k次后走過的總格數(shù)是1+2+3+…+k=k(k+1),應(yīng)停在第k(k+1)-7p格,
這時(shí)P是整數(shù),且使0≤k(k+1)-7p≤6,分別取k=1,2,3,4,5,6,7時(shí),
k(k+1)-7p=1,3,6,3,1,0,0,發(fā)現(xiàn)第2,4,5格沒有停棋,
若7<k≤10,設(shè)k=7+t(t=1,2,3)代入可得,k(k+1)-7p=7m+t(t+1),
由此可知,停棋的情形與k=t時(shí)相同,
故第2,4,5格沒有停棋,
即這枚棋子永遠(yuǎn)不能到達(dá)的角的個(gè)數(shù)是3.
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正比例函數(shù)y=2x與反比例函數(shù)y=(k>0)的圖象交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為4,
(1)求k的值;
(2)根據(jù)圖象直接寫出正比例函數(shù)值小于反比例函數(shù)值時(shí)x的取值范圍;
(3)過原點(diǎn)O的另一條直線l交雙曲線y=(k>0)于P、Q兩點(diǎn)(P點(diǎn)在第一象限),若由點(diǎn)A、P、B、Q為頂點(diǎn)組成的四邊形面積為224,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),P為△ABC所在平面上一點(diǎn),且∠APB=∠BPC=∠CPA=120°,則點(diǎn)P叫做△ABC的費(fèi)馬點(diǎn).
(1)如果點(diǎn)P為銳角△ABC的費(fèi)馬點(diǎn),且∠ABC=60°.
①求證:△ABP∽△BCP;
②若PA=3,PC=4,則PB= .
(2)已知銳角△ABC,分別以AB、AC為邊向外作正△ABE和正△ACD,CE和BD 相交于P點(diǎn).如圖(2)
①求∠CPD的度數(shù);
②求證:P點(diǎn)為△ABC的費(fèi)馬點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)分?jǐn)?shù)(分子、分母均為正整數(shù))的分母比它的分子大5.
(1)若將這個(gè)分?jǐn)?shù)的分子加上14,分母減去1,則所得的分?jǐn)?shù)是原分?jǐn)?shù)的倒數(shù),求這個(gè)分?jǐn)?shù);
(2)若將這個(gè)分?jǐn)?shù)的分子、分母同時(shí)加上4,試比較所得的分?jǐn)?shù)和原分?jǐn)?shù)的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=6,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒 個(gè)單位長度的速度沿線段AD運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)D出發(fā),以每秒2個(gè)單位長度的速度沿折線段D﹣O﹣C運(yùn)動(dòng),已知P、Q同時(shí)開始移動(dòng),當(dāng)動(dòng)點(diǎn)P到達(dá)D點(diǎn)時(shí),P、Q同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)t=1秒時(shí),求動(dòng)點(diǎn)P、Q之間的距離;
(2)若動(dòng)點(diǎn)P、Q之間的距離為4個(gè)單位長度,求t的值;
(3)若線段PQ的中點(diǎn)為M,在整個(gè)運(yùn)動(dòng)過程中;直接寫出點(diǎn)M運(yùn)動(dòng)路徑的長度為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)O是等腰直角三角形ABC斜邊上的中點(diǎn),AB=BC,E是AC上一點(diǎn),連結(jié)EB.
(1) 如圖1,若點(diǎn)E在線段AC上,過點(diǎn)A作AM⊥BE,垂足為M,交BO于點(diǎn)F.求證:OE=OF;
(2)如圖2,若點(diǎn)E在AC的延長線上,AM⊥BE于點(diǎn)M,交OB的延長線于點(diǎn)F,其它條件不變,則結(jié)論“OE=OF”還成立嗎?如果成立,請(qǐng)給出證明;如果不成立,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是Rt△ABC斜邊BC上的高.
(1)尺規(guī)作圖:作∠C的平分線,交AB于點(diǎn)E,交AD于點(diǎn)F(不寫作法,必須保留作圖痕跡,標(biāo)上應(yīng)有的字母);
(2)在(1)的條件下,過F畫BC的平行線交AC于點(diǎn)H,線段FH與線段CH的數(shù)量關(guān)系如何?請(qǐng)予以證明;
(3)在(2)的條件下,連結(jié)DEDH.求證:ED⊥HD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,各個(gè)角都相等,各條邊都相等的多邊形叫做正多邊形.對(duì)一個(gè)各條邊都相等的凸多邊形(邊數(shù)大于3),可以由若干條對(duì)角線相等判定它是正多邊形.例如,各條邊都相等的凸四邊形,若兩條對(duì)角線相等,則這個(gè)四邊形是正方形.
(1)已知凸五邊形的各條邊都相等.
①如圖1,若,求證:五邊形是正五邊形;
②如圖2,若,請(qǐng)判斷五邊形是不是正五邊形,并說明理由:
(2)判斷下列命題的真假.(在括號(hào)內(nèi)填寫“真”或“假”)
如圖3,已知凸六邊形的各條邊都相等.
①若,則六邊形是正六邊形;( )
②若,則六邊形是正六邊形. ( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與x軸交于點(diǎn)A,與y軸交于點(diǎn)C.拋物線經(jīng)過A,C兩點(diǎn),且與x軸交于另一點(diǎn)B(點(diǎn)B在點(diǎn)A右側(cè)).
(1)求拋物線的解析式及點(diǎn)B坐標(biāo);
(2)若點(diǎn)M是線段BC上的一動(dòng)點(diǎn),過點(diǎn)M的直線EF平行y軸交x軸于點(diǎn)F,交拋物線于點(diǎn)E.求ME長的最大值;
(3)試探究當(dāng)ME取最大值時(shí),在拋物線上、x軸下方是否存在點(diǎn)P,使以M,F(xiàn),B,P為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,試說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com