【題目】如圖,已知在△ABC中,∠ACB=90°,AC=BC,∠CAD=CBD

1)求證:CD平分∠ACB;

2)點EAD延長線上一點,CE=CA,CFBDAE于點F,若∠CAD=15°

求證:EF=BD

【答案】1)見解析;(2)見解析.

【解析】

1)根據(jù)等腰直角三角形的性質可得∠BAC=∠ABC,進而得到∠BAD=ABD,由等角對等邊可得DA=DB,利用SSS證明DACDBC,得到∠DCA=∠DCB即可得出結論;

2)根據(jù)DACDBC,CE=CA可得∠DBC=∠E15°,CE=CA=CB,然后根據(jù)三角形外角的性質求出∠BDF60°,利用平行線的性質得出∠CFD60°,可得∠CFE120°,再根據(jù)三角形內角和定理求出∠CDB120°,利用AAS證明BDCEFC即可得出結論.

證明:(1)∵∠ACB=90°AC=BC,

∴∠BAC=∠ABC45°,

∵∠CAD=CBD,

∴∠BAD=ABD,

DA=DB

又∵AC=BC,CD=CD,

DACDBC

∴∠DCA=∠DCB,即CD平分∠ACB

2)∵DACDBCCE=CA,∠CAD=15°,

∴∠DBC15°,∠E15°,CE=CA=CB,

∴∠BAD=ABD45°15°30°

∴∠BDF30°30°60°,

CFBD,

∴∠CFD=∠BDF60°

∴∠CFE120°,

又∵CD平分∠ACB,

∴∠DCB45°,

∴∠CDB180°15°45°120°

BDCEFC中,

BDCEFCAAS),

EF=BD

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在上各取一點E、D,使,連接、相交于點O,再連接、,若,則圖中全等三角形共有(

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一組數(shù)據(jù)0,1,2,2,34,若添加一個數(shù)據(jù)2,則下列統(tǒng)計量中發(fā)生變化的是( )

A.方差B.中位數(shù)C.平均數(shù)D.極差

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,,點的坐標為,,點為線段上的動點(點不與、重合),連接,作,且,過點軸,垂足為點.

1)求證:;

2)猜想的形狀并證明結論;

3)如圖2,當為等腰三角形時,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖平面直角坐標系中,A點坐標為(0,1),ABBC,∠ABC90°,CDx軸.

1)填空:B點坐標為   C點坐標為   

2)若點P是直線CD上第一象限上一點且△PAB的面積為6.5,求P點的坐標;

3)在(2)的條件下點Mx軸上線段OD之間的一動點,當△PAM為等腰三角形時,直接寫出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以ABC的邊AB為直徑畫⊙O,交AC于點D,半徑OEBD,連接BE,DE,BD,設BEAC于點F,若∠DEBDBC

(1)求證:BC是⊙O的切線;

(2)若BFBC=2,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB=AC,A=36°,AB的垂直平分線MDAC于點D,ABM,以下結論:①△BCD是等腰三角形;②射線BDACB的角平分線;③△BCD的周長CBCD=AC+BC;④△ADMBCD.正確的有(

A.①②③B.①②C.①③D.③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,過點A2,0)的兩條直線,分別交軸于B,C,其中點B在原點上方,點C在原點下方,已知AB=.

1)求點B的坐標;

2)若△ABC的面積為4,求的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖.在直角坐標系中,矩形ABCO的邊OA在x軸上,邊OC在y軸上,點B的坐標為(1,3),將矩形沿對角線AC翻折,B點落在D點的位置,且AD交y軸于點E.那么點D的坐標為______

查看答案和解析>>

同步練習冊答案