【題目】如圖,在△ABC中,AD⊥BC于點(diǎn)D,BD=3cm,DC=8cm,AD=4cm,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿折線BA﹣AC向終點(diǎn)C做勻速運(yùn)動(dòng),點(diǎn)P在線段BA上的運(yùn)動(dòng)速度是5cm/s;在線段AC上的運(yùn)動(dòng)速度是cm/s,當(dāng)點(diǎn)P不與點(diǎn)B、C重合時(shí),過點(diǎn)P作PQ⊥BC于點(diǎn)Q,將△PBQ繞PQ的中點(diǎn)旋轉(zhuǎn)180°得到△QB′P,設(shè)四邊形PBQB′與△ABD重疊部分圖形的面積為y(cm2),點(diǎn)P的運(yùn)動(dòng)時(shí)間為x(s).
(1)用含x的代數(shù)式表示線段AP的長(zhǎng).
(2)當(dāng)點(diǎn)P在線段BA上運(yùn)動(dòng)時(shí),求y與x之間的函數(shù)關(guān)系式.
(3)當(dāng)經(jīng)過點(diǎn)B′和△ADC一個(gè)頂點(diǎn)的直線平分△ADC的面積時(shí),直接寫出x的值.
【答案】(1)當(dāng)時(shí),PA=5t,當(dāng)1<x<5時(shí),
(2)y=;(3)x=s或s或s時(shí),經(jīng)過點(diǎn)B′和△ADC一個(gè)頂點(diǎn)的直線平分△ADC的面積.
【解析】分析:(1)分兩種情形討論即可.
(2)分兩種情形①如圖1中,當(dāng)時(shí),重疊部分是四邊形PBQB′.
②如圖2中,當(dāng)重疊部分是五邊形PBQMN.分別求解即可.
(3)分三種情形①如圖3中,當(dāng)PA=B時(shí),PB′是△ABD是中位線.②如圖4中,設(shè)AB′的延長(zhǎng)線交BC于G.③如圖5中,連接DB′交AC于N,延長(zhǎng)B′P交AD于T,作NM⊥PB′于M,NH⊥AD于H.分別構(gòu)建方程即可解決問題.
詳解:(1)當(dāng)時(shí),PA=5t,
當(dāng)1<x<5時(shí),
(2)如圖1中,當(dāng)時(shí),重疊部分是四邊形PBQB′.
∵PQ⊥BC,AD⊥BC,
∴PQ∥AD,
∴
∴
∴PQ=4x,BQ=3x,
由題意四邊形PBQB′是平行四邊形,
∴
如圖2中,當(dāng)重疊部分是五邊形PBQMN.
∵PN∥BD,
∴
∴PN=3(1x),B′N=3x3(1x)=6x3,易知MN=4(2x
∴
綜上所述,
(3)如圖3中,當(dāng)PA=B時(shí),PB′是△ABD是中位線。
∴AB′=DB′,此時(shí)CB′平分△ADC的面積,此時(shí).
如圖4中,設(shè)AB′的延長(zhǎng)線交BC于G.
當(dāng)DG=GC=4時(shí),AB′平分△ADC的面積,
∵PB′∥BG,
∴ ∴
∴
如圖5中,連接DB′交AC于N,延長(zhǎng)B′P交AD于T,作NM⊥PB′于M,NH⊥AD于H.
由題意PA=(x1),AT=x1,TP=2(x1),PB′=BQ=3+2(x1)=2x+1,
當(dāng)AN=CN時(shí),DB′平分△ADC的面積,
∴可得AH=HD=2,HN=TM=2,
∴B′M=TB′MT=2(x1)+2x+14=4x5,MN=2(x1)=3x,TD=4(x1)=5x,
∵MN∥TD,
∴
∴
∴
綜上所述,x=s或s或s時(shí),經(jīng)過點(diǎn)B′和△ADC一個(gè)頂點(diǎn)的直線平分△ADC的面積。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知三角形紙片(如圖),將紙片折疊,使點(diǎn)與點(diǎn)重合,折痕分別與邊,交于點(diǎn)、,點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為點(diǎn),聯(lián)結(jié).
(1)根據(jù)題意作出圖形:
(2)如果,求的度數(shù);
(3)如果,的面積為8,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,已知A(2,2)、B(4,0),若在x軸上取點(diǎn)C,使△ABC為等腰三角形,則滿足條件的點(diǎn)C的個(gè)數(shù)是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB于點(diǎn)D,∠ACD=3∠BCD,E是斜邊AB的中點(diǎn),則∠ECD的度數(shù)為__________度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把矩形OABC放入平面直角坐標(biāo)系xO中,使OA、OC分別落在x、y軸的正半軸上,其中AB=15,對(duì)角線AC所在直線解析式為y=﹣x+b,將矩形OABC沿著BE折疊,使點(diǎn)A落在邊OC上的點(diǎn)D處.
(1)求點(diǎn)B的坐標(biāo);
(2)求EA的長(zhǎng)度;
(3)點(diǎn)P是y軸上一動(dòng)點(diǎn),是否存在點(diǎn)P使得△PBE的周長(zhǎng)最小,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)把下列各數(shù)分別填在相應(yīng)的集合里:
, , ,,0, ,……
正有理數(shù)集合:{ …}
整數(shù)集合:{ …}
分?jǐn)?shù)集合:{ …}
(2)在下面的數(shù)軸上表示下列各數(shù),并按照從小到大的順序用“<”號(hào)連接起來
,,, ,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩地相距千米,甲、乙兩人都從地去地,圖中和分別表示甲、乙兩人所走路程(千米)與時(shí)間(小時(shí))之間的關(guān)系.對(duì)于下列說法:①乙晚出發(fā)小時(shí);②乙出發(fā)小時(shí)后追上甲;③甲的速度是千米/小時(shí);④乙先到達(dá)地,其中正確的個(gè)數(shù)是( )
A.個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】[材料閱讀]
材料一:如圖,,點(diǎn)在的平分線上,,點(diǎn),D分別在上.可求得如下結(jié)論:,為定值.
材料二(性質(zhì)):四邊形的內(nèi)角和為.
[問題解決]
(1)如圖,點(diǎn)在的平分線上,的邊與交于點(diǎn),且,求的值(用含的式子表示).
(2)如圖,在平面直角坐標(biāo)系中,直線與軸,軸分別交于兩點(diǎn),點(diǎn)是的中點(diǎn),,與軸交于點(diǎn),與軸的正半軸交于點(diǎn),連接.求的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,將一個(gè)直角三角形紙片()的一個(gè)頂點(diǎn)放在點(diǎn)處,現(xiàn)將三角形紙片繞點(diǎn)任意轉(zhuǎn)動(dòng),平分斜邊與的夾角,平分.
(1)將三角形紙片繞點(diǎn)轉(zhuǎn)動(dòng)(三角形紙片始終保持在的內(nèi)部),若,則_______;
(2)將三角形紙片繞點(diǎn)轉(zhuǎn)動(dòng)(三角形紙片始終保持在的內(nèi)部),若射線恰好平方,若,求的度數(shù);
(3)將三角形紙片繞點(diǎn)從與重合位置逆時(shí)針轉(zhuǎn)到與重合的位置,猜想在轉(zhuǎn)動(dòng)過程中和的數(shù)量關(guān)系?并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com