【題目】如圖,平面直角坐標系中,已知A(22)、B(4,0),若在x軸上取點C,使△ABC為等腰三角形,則滿足條件的點C的個數(shù)是( )

A. 1B. 2C. 3D. 4

【答案】D

【解析】

由點A、B的坐標可得到AB=2,然后分類討論:若AC=AB;若BC=AB;若CA=CB,確定C點的個數(shù).

∵點AB的坐標分別為(2,2)、B(4,0)

AB=2,

如圖,①若AC=AB,以A為圓心,AB為半徑畫弧與x軸有2個交點(B),即(0,0)、(4,0)

∴滿足ABC是等腰三角形的C點有1個;

②若BC=AB,以B為圓心,BA為半徑畫弧與x軸有2個交點,即滿足ABC是等腰三角形的C點有2個;

③若CA=CB,作AB的垂直平分線與x軸有1個交點,即滿足ABC是等腰三角形的C點有1個;

綜上所述:點Cx軸上,ABC是等腰三角形,符合條件的點C共有4個.

故選D

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】將連續(xù)的正偶數(shù)24,6,8…,排成下表:

1)十字框中的五個數(shù)的和是中間的數(shù)16的幾倍?

2)若將十字框上下左右移動,可框住另外的五個數(shù),設(shè)中間的數(shù)為,用代數(shù)式表示十字框中的五個數(shù)的和;

3)這五個數(shù)的和能等于2010嗎?如能,寫出這五個數(shù),如不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】教材母題 點P(x,y)在第一象限,且xy=8,點A的坐標為(6,0).設(shè)△OPA的面積為S.

(1)用含有x的式子表示S,寫出x的取值范圍,畫出函數(shù)S的圖象;

(2)當點P的橫坐標為5時,△OPA的面積為多少?

(3)△OPA的面積能大于24嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD中,ABC=60°,AB=4,AD=8,點E,F(xiàn)分別是邊BC,AD的中點,點M是AE與BF的交點,點N是CF與DE的交點,則四邊形ENFM的周長是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ADABC的邊BC上的高,∠B60°,C45°AC6.求:

(1)AD的長;

(2)ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點OAB上的一點,∠COE90°OF平分∠AOE

1)如圖1,當點C,E,F在直線AB的同一側(cè)時,若∠AOC40°,求∠BOE和∠COF的度數(shù);

2)在(1)的條件下,∠BOE和∠COF有什么數(shù)量關(guān)系?請直接寫出結(jié)論,不必說明理由;

3)如圖2,當點C,E,F分別在直線AB的兩側(cè)時,若∠AOCβ,那么(2)中∠BOE和∠COF的數(shù)量關(guān)系是否仍然成立?請寫出結(jié)論,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】去冬今春,我市部分地區(qū)遭受了罕見的旱災,旱災無情人有情.某單位給某鄉(xiāng)中小學捐獻一批飲用水和蔬菜共320件,其中飲用水比蔬菜多80件.

1)求飲用水和蔬菜各有多少件?

2)現(xiàn)計劃租用甲、乙兩種貨車共8輛,一次性將這批飲用水和蔬菜全部運往該鄉(xiāng)中小學.已知每輛甲種貨車最多可裝飲用水40件和蔬菜10件,每輛乙種貨車最多可裝飲用水和蔬菜各20件.則運輸部門安排甲、乙兩種貨車時有幾種方案?請你幫助設(shè)計出來;

3)在(2)的條件下,如果甲種貨車每輛需付運費400元,乙種貨車每輛需付運費360元.運輸部門應選擇哪種方案可使運費最少?最少運費是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ADBC于點D,BD=3cm,DC=8cm,AD=4cm,動點P從點B出發(fā),沿折線BA﹣AC向終點C做勻速運動,點P在線段BA上的運動速度是5cm/s;在線段AC上的運動速度是cm/s,當點P不與點B、C重合時,過點PPQBC于點Q,將△PBQPQ的中點旋轉(zhuǎn)180°得到△QB′P,設(shè)四邊形PBQB′與△ABD重疊部分圖形的面積為y(cm2),點P的運動時間為x(s).

(1)用含x的代數(shù)式表示線段AP的長.

(2)當點P在線段BA上運動時,求yx之間的函數(shù)關(guān)系式.

(3)當經(jīng)過點B′和△ADC一個頂點的直線平分△ADC的面積時,直接寫出x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD是等腰△ABC底邊BC上的高,點O是AC中點,延長DO到E

使AE∥BC,連接AE。

(1)求證:四邊形ADCE是矩形;

(2)①若AB=17,BC=16,則四邊形ADCE的面積= ;

②若AB=10,則BC= 時,四邊形ADCE是正方形。

查看答案和解析>>

同步練習冊答案