【題目】如圖,和是等邊三角形,,
請你判斷的形狀并說明理由;
如果繞點旋轉,交邊于點,請你判斷的周長是否發(fā)生變化?如果不變,說明理由;如果變化,說明當點在什么位置時,的周長最。
科目:初中數學 來源: 題型:
【題目】在一次科技活動中,小明進行了模擬雷達掃描實驗.如圖,表盤是△ABC,其中AB=AC,∠BAC=120°,在點A處有一束紅外光線AP,從AB開始,繞點A逆時針勻速旋轉,每秒鐘旋轉15°,到達AC后立即以相同旋轉速度返回AB,到達后立即重復上述旋轉過程.小明通過實驗發(fā)現,光線從AB處旋轉開始計時,旋轉1秒,此時光線AP交BC邊于點M,BM的長為(20 ﹣20)cm.
(1)求AB的長;
(2)從AB處旋轉開始計時,若旋轉6秒,此時光線AP與BC邊的交點在什么位置?若旋轉2014秒,交點又在什么位置?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】數學活動:探究利用角的對稱性構造全等三角形解決問題
(1)如圖①,OP是∠MON的平分線,請你利用該圖形畫一對以OP所在直線為對稱軸的全等三角形;(寫出簡單做法,不用證明兩三角形全等,不用尺規(guī)作圖亦可)
(2)如圖②,在△ABC中,∠ACB=90°,∠B=60°,AD、CE分別是∠BAC、∠BCA的平分線,AD、CE相交于點F.請直接填空:∠AFE= 度,DF EF(填>,<或=);
(3)如圖③,在△ABC中,如果∠ACB≠90°,而(2)中的其他條件不變,請問,你在(2)中所得結論是否仍然成立?若成立,請證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知正反比例函數的圖像交于、兩點,過第二象限的點作軸,點的橫坐標為,且,點在第四象限
(1)求這兩個函數解析式;
(2)求這兩個函數圖像的交點坐標;
(3)若點在坐標軸上,聯結、,寫出當時的點坐標
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程kx2﹣4x+2=0有實數根.
(1)求k的取值范圍;
(2)若△ABC中,AB=AC=2,AB,BC的長是方程kx2﹣4x+2=0的兩根,求BC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,已知,分別為兩坐標軸上的點,且,滿足,且.
(1)求、、三點的坐標;
(2)若,過點的直線分別交、于、兩點,且,設、兩點的橫坐標分別為、,求的值;
(3)如圖2,若,點是軸上點右側一動點,于點,在上取點,使,連接,當點在點右側運動時,的度數是否改變?若不變,請求其值;若改變,請說明理由.
圖1 圖2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的高,AE是∠BAC平分線.
(1)若∠B=38°,∠C=70°,求∠DAE的度數;
(2)若∠B>∠C,試探求∠DAE、∠B、∠C之間的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店銷售面向中考生的計數跳繩,每根成本為20元,銷售的前40天內的日銷售量m(根)與時間t(天)的關系如表.
時間t(天) | 1 | 3 | 8 | 10 | 26 | … |
日銷售量m(件) | 51 | 49 | 44 | 42 | 26 | … |
前20天每天的價格y1(元/件)與時間t(天)的函數關系式為:y1= t+25(1≤t≤20且t為整數);后20天每天的價格y2(元/件)與時間t(天)的函數關系式為:y2=﹣ t+40(21≤t≤40且t為整數).
(1)認真分析表中的數據,用所學過的一次函數,二次函數的知識確定一個滿足這些數據m(件)與t(天)之間的關系式;
(2)請計算40天中娜一天的日銷售利潤最大,最大日銷售利潤是多少?
(3)在實際銷售的前20天中,該公司決定每銷售一件商品就捐贈a元利潤(a<3)給希望工程,公司通過銷售記錄發(fā)現,前20天中扣除捐贈后的日銷售利潤隨時間t(天)的增大而增大,求a的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線C1:y=﹣ x2+mx+m+ .
(1)①無論m取何值,拋物線經過定點P;
②隨著m的取值變化,頂點M(x,y)隨之變化,y是x的函數,則其函數C2關系式為;
(2)如圖1,若該拋物線C1與x軸僅有一個公共點,請在圖1中畫出頂點M滿足的函數C2的大致圖象,平行于y軸的直線l分別交C1、C2于點A、B,若△PAB為等腰直角三角形,判斷直線l滿足的條件,并說明理由;
(3)如圖2,拋物線C1的頂點M在第二象限,交x軸于另一點C,拋物線上點M與點P之間一點D的橫坐標為﹣2,連接PD、CD、CM、DM,若S△PCD=S△MCD , 求二次函數的解析式.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com