精英家教網 > 初中數學 > 題目詳情

【題目】如圖,將平行四邊形ABCD的邊DC延長至點E,使CE=DC,連接AE,交BC于點F

1)求證:△ABF≌△ECF

2)連接AC、BE,則當∠AFC∠D滿足什么條件時,四邊形ABEC是矩形?請說明理由.

【答案】(1)證明見解析;(2)當∠AFC=2∠D時,四邊形ABEC是矩形.理由見解析.

【解析】

試題(1)由四邊形ABCD是平行四邊形,CE=DC,易證得∠ABF=∠ECF,∠AFB=∠EFC,AB=EC,則可證得△ABF≌△ECF;

2)首先根據四邊形ABCD是平行四邊形,得到四邊形ABEC是平行四邊形,然后證得FC=FE,利用對角線互相相等的四邊形是矩形判定四邊形ABEC是矩形.

試題解析:(1)證明:在平行四邊形ABCD中,AB∥CD,AB=CD,

∴∠BAE=∠AEC,

∵CE=CD

∴AB=CE,

△ABF△ECF中,

∴△ABF≌△ECFAAS);

2)當∠AFC=2∠D時,四邊形ABEC是矩形.

四邊形ABCD是平行四邊形,

∴BC∥AD,∠BCE=∠D

由題意易得AB∥EC,AB∥EC,

四邊形ABEC是平行四邊形.

∵∠AFC=∠FEC+∠BCE,

∠AFC=2∠D時,則有∠FEC=∠FCE,

∴FC=FE

四邊形ABEC是矩形.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,ABC中,AB=AC=24,DBC的中點,AC的垂直平分線EF分別交AC、AD于點EF,EF = 5 .

1)求點F到邊AB的距離FG的長;

2)求 FB點的距離FB的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知ABC=90°,AB=BC.直線l與以BC為直徑的圓O相切于點C.點F是圓O上異于B、C的動點,直線BF與l相交于點E,過點F作AF的垂線交直線BC與點D.

(1)如果BE=15,CE=9,求EF的長;

(2)證明:①△CDF∽△BAF;②CD=CE;

(3)探求動點F在什么位置時,相應的點D位于線段BC的延長線上,且使BC=CD,請說明你的理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在等腰Rt△ABC中,∠C=90°,D是斜邊上AB上任一點,AECDE,BFCDCD的延長線于F,CHABH點,交AEG

(1)試說明AH=BH

(2)求證:BDCG

(3)探索AE與EF、BF之間的數量關系

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,E是正方形ABCD的邊CD的中點,AE的垂直平分線分別交AE、BCH、G.CG=7,則正方形ABCD的面積等于_______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形網格中每個小正方形邊長都是1.

(1)畫出ABC關于直線1對稱的圖形A1BlCl;

(2)在直線l上找一點P,使PB=PC;(要求在直線1上標出點P的位置)

(3)連接PA、PC,計算四邊形PABC的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AO平分∠BAC,AO⊥BC,DE⊥BC,GH⊥BC,垂足分別為O、E、H,且DO∥AC,∠B=43°,則圖中角的度數為47°的角的個數是(  )

A. 5 B. 6 C. 7 D. 8

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形ABCD中,M、N是對角線AC上的兩個動點,P是正方形四邊上的任意一點,且AB=4,MN=2,設AM=x,在下列關于△PMN是等腰三角形和對應P點個數的說法中,

x=0(即M、A兩點重合)時,P點有6個;

P點有8個時,x=2﹣2;

△PMN是等邊三角形時,P點有4個;

0<x<4﹣2時,P點最多有9個.

其中結論正確的是( 。

A. ①② B. ①③ C. ②③ D. ③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某小組做用頻率估計概率的實驗時,繪出的某一結果出現(xiàn)的頻率折線圖,則符合這一結果的實驗可能是(  )

A. 拋一枚硬幣,出現(xiàn)正面朝上

B. 擲一個正六面體的骰子,出現(xiàn)3點朝上

C. 一副去掉大小王的撲克牌洗勻后,從中任抽一張牌的花色是紅桃

D. 從一個裝有2個紅球1個黑球的袋子中任取一球,取到的是黑球

查看答案和解析>>

同步練習冊答案