【題目】如圖,△ACB和△ECD都是等腰直角三角形,△ACB的銳角頂點A在△ECD的斜邊DE上,若AE=,AC=,則DE=____.
【答案】 .
【解析】
連結(jié)BD,由等腰直角三角形的性質(zhì)得出∠ECD=∠ACB=90°,∠E=∠ADC=∠CAB=45°,EC=DC,AC=BC,由SAS證明△AEC≌△BDC,得出AE=BD,證出∠BDA=∠BDC+∠ADC=90°,在Rt△ADB中.由勾股定理求得AD,即可得出結(jié)論.
解:連結(jié)BD,如圖,
∵△ACB與△ECD都是等腰直角三角形,
∴∠ECD=∠ACB=90°,∠E=∠ADC=∠CAB=45°,EC=DC,AC=BC,
∵∠ECD-∠ACD=∠ACB-∠ACD,
∴∠ACE=∠BCD,
在△AEC和△BDC中,
,
∴△AEC≌△BDC(SAS).
∴AE=BD= ,∠E=∠BDC=45°,
∴∠BDA=∠BDC+∠ADC=90°,
在Rt△ACB中.AB=AC= ,
由勾股定理得:AD= ==,
∴DE=AE+AD= .
故答案為: .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,一次函數(shù)y=﹣2x+8的圖象與x軸,y軸分別交于點A,點C,過點A作AB⊥x軸,垂足為點A,過點C作CB⊥y軸,垂足為點C,兩條垂線相交于點B.
(1)線段AB,BC,AC的長分別為AB= ,BC= ,AC= ;
(2)折疊圖1中的△ABC,使點A與點C重合,再將折疊后的圖形展開,折痕DE交AB于點D,交AC于點E,連接CD,如圖2.
請從下列A、B兩題中任選一題作答,我選擇 題.
A:①求線段AD的長;
②在y軸上,是否存在點P,使得△APD為等腰三角形?若存在,請直接寫出符合條件的所有點P的坐標(biāo);若不存在,請說明理由.
B:①求線段DE的長;
②在坐標(biāo)平面內(nèi),是否存在點P(除點B外),使得以點A,P,C為頂點的三角形與△ABC全等?若存在,請直接寫出所有符合條件的點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,△ACD沿AD折疊,使得點C落在斜邊AB上的點E處.
(1)求證:△BDE∽△BAC;
(2)已知AC=6,BC=8,求線段AD的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知線段a和線段AB ( a <AB).
(1)以AB為一邊,畫△ABC ,使AC a , A=50 ,用直尺、圓規(guī)作出△ABC邊BC的垂直平分線,分別與邊AB、BC 交于點D、E,聯(lián)結(jié)CD ;(不寫畫法,保留作圖痕跡)
(2)在(1)中,如果AB5 ,AC3 ,那么△ADC 的周長等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】莊子說:“一尺之椎,日取其半,萬世不竭”.這句話(文字語言)表達(dá)了古人將事物無限分割的思想,用圖形語言表示為圖1,按此圖分割的方法,可得到一個等式(符號語言):1=
圖2也是一種無限分割:在△ABC中,∠C=90°,∠B=30°,過點C作CC1⊥AB于點C1,再過點C1作C1C2⊥BC于點C2,又過點C2作C2C3⊥AB于點C3,如此無限繼續(xù)下去,則可將利△ABC分割成△ACC1、△CC1C2、△C1C2C3、△C2C3C4、…、△Cn﹣2Cn﹣1Cn、….假設(shè)AC=2,這些三角形的面積和可以得到一個等式是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某天早晨,王老師從家出發(fā)步行前往學(xué)校,途中在路邊一飯店吃早餐,如圖所示是王老師從家到學(xué)校這一過程中所走的路程S(米)與時間t(分)之間的關(guān)系.
(1)學(xué)校離他家 米,從出發(fā)到學(xué)校,王老師共用了 分鐘;
(2)王老師吃早餐用了多少分鐘?
(3)王老師吃早餐以前的速度快還是吃完早餐以后的速度快?吃完早餐后的平均速度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,∠BAC,∠ACB的平分線相交于點E,過點E作EF∥BC交AC于點F,則EF的長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,點C在線段AB上,AC = 8 cm,CB = 6 cm,點M、N分別是AC、BC的中點.
(1)求線段MN的長.
(2)若C為線段AB上任意一點,滿足AC+CB=a(cm),其他條件不變,你能猜想出MN的長度嗎?并說明理由.
(3)若C在線段AB的延長線上,且滿足AC-CB=b(cm),M、N分別為AC、BC的中點,你能猜想出MN的長度嗎?請畫出圖形,寫出你的結(jié)論,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點E在菱形ABCD的對角線DB的延長線上,且∠AED=45°,過B作AE的垂線交AE于F,連接FD.當(dāng)∠AFD=60°時,=___________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com