【題目】如圖,在△ABC中,D是邊AC上一點,聯(lián)結BD,給出下列條件:∠ABD=∠ACB;②AB2=ADAC;③ADBC=ABBD;④ABBC=ACBD.其中單獨能夠判定△ABD∽△ACB的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】

△ABD△ACB中,∠A是公共角,①∠ABD∠ACB,由兩角分別相等的兩個三角形相似可證△ABD∽△ACB;②AB2AD·AC,由兩邊成比例且夾角相等的兩個三角形相似可證△ABD∽△ACB;如圖,作DF⊥ABF,BE⊥ACE,可證Rt△ADF∽Rt△ABE,得出,再由AD·BCAB·BD,可得,故△BDF∽△CBE,得∠ABD∠C,即可得出△ABD∽△ACB④AB·BCAC·BD,無法判定△ABD∽△ACB.故選C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某商場經營某種品牌的玩具,購進時的單價是30元,根據(jù)市場調查:在一段時間內,銷售單價是40元時,銷售量是600件,而銷售單價每漲1元,就會少售出10件玩具.

(1)該玩具銷售單價定為多少元時,商場能獲得12000元的銷售利潤?

(2)該玩具銷售單價定為多少元時,商場獲得的銷售利潤最大?最大利潤是多少?

(3)若玩具廠規(guī)定該品牌玩具銷售單價不低于46元,且商場要完成不少于500件的銷售任務,求商場銷售該品牌玩具獲得的最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】兩個反比例函數(shù)在第一象限內的圖象如圖所示,點P的圖象上,PC軸于點C,交的圖象于點A,PC軸于點D,交的圖象于點B. 當點P的圖象上運動時,以下結論:

的值不會發(fā)生變化

PAPB始終相等

④當點APC的中點時,點B一定是PD的中點.

其中一定不正確的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)CD與一次函數(shù)AB,都經過點B-1,4.

1)求兩條直線的解析式;

2)求四邊形ABDO的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】高鐵給我們的出行帶來了極大的方便.如圖,和諧號高鐵列車座椅后面的小桌板收起時,小桌板的支架的底端N與桌面頂端M的距離MN=75cm,且可以看作與地面垂直.展開小桌板使桌面保持水平,AB⊥MN,∠MAB=∠MNB=37°,且支架長BN與桌面寬AB的長度之和等于MN的長度.求小桌板桌面的寬度AB(結果精確到1cm,參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD,DE交BC于F,交AB的延長線于E,且EDB=C.

(1)求證:ADEDBE;

(2)若DE=9cm,AE=12cm,求DC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,花叢中有一路燈AB,在燈光下,小明在D點處的影長DE=3m,沿BD方向走到G點,DG=5m,這時,小明的影長GH=5m,小明的身高為1.7m.

(1)畫出路燈燈泡A的位置.

(2)求AB的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一個二次函數(shù)的圖象,三位同學分別說出了它的一些特點:

甲:對稱軸為直線x=4

乙:與x軸兩個交點的橫坐標都是整數(shù).

丙:與y軸交點的縱坐標也是整數(shù),且以這三個點為頂點的三角形面積為3.請你寫出滿足上述全部特點的一個二次函數(shù)解析式__________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知P、Q分別是⊙O的內接正六邊形ABCDEF的邊ABBC上的點,AP=BQ,則∠POQ的度數(shù)為___°.

查看答案和解析>>

同步練習冊答案