【題目】已知:如圖,拋物線y=﹣x2+bx+C經(jīng)過(guò)點(diǎn)B(0,3)和點(diǎn)A(3,0)

(1)求該拋物線的函數(shù)表達(dá)式和直線AB的函數(shù)表達(dá)式;

(2)若直線lx軸,在第一象限內(nèi)與拋物線交于點(diǎn)M,與直線AB交于點(diǎn)N,請(qǐng)?jiān)趥溆脠D上畫(huà)出符合題意的圖形,并求點(diǎn)M與點(diǎn)N之間的距離的最大值或最小值,以及此時(shí)點(diǎn)M,N的坐標(biāo).

【答案】(1) 拋物線的函數(shù)表達(dá)式是y=﹣x2+2x+3;直線AB的函數(shù)表達(dá)式是y=﹣x+3;(2) 點(diǎn)M與點(diǎn)N之間的距離有最大值;點(diǎn)M坐標(biāo)為(,)點(diǎn)N的坐標(biāo)為(,)

【解析】整體分析

(1)把點(diǎn)B(0,3)和點(diǎn)A(3,0)代入到y=-x2+bx+c和一次函數(shù)的一般式中求解;(2)設(shè)直線l的橫坐標(biāo)為a,分別用a表示出點(diǎn)M,N的坐標(biāo),然后用a表示出MN的長(zhǎng),用配方法即可求出MN的最大值.

:(1)∵拋物線y=-x2+bx+c經(jīng)過(guò)點(diǎn)B(0,3)和點(diǎn)A(30),

解得

拋物線的函數(shù)表達(dá)式是y=-x2+2x+3;

設(shè)直線AB:y=kx+m,根據(jù)題意得,解得

直線AB的函數(shù)表達(dá)式是y=-x+3;

(2)如圖,設(shè)直線l的橫坐標(biāo)為a,

則點(diǎn)M的坐標(biāo)為(a-a2+2a+3),點(diǎn)N的坐標(biāo)是(a-a+3),

又點(diǎn)MN在第一象限,

∴|MN|=-a2+2a+3-(-a+3)=-a2+3a,

|MN|=-a2+3a=-(a2-3a+)+=,

當(dāng)a= 時(shí),|MN|有最大值,最大值為

即點(diǎn)M與點(diǎn)N之間的距離有最大值,

此時(shí)點(diǎn)M坐標(biāo)為(,),點(diǎn)N的坐標(biāo)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD的對(duì)角線AC、BD交于點(diǎn)O,已知OAC的中點(diǎn),AE=CF,DFBE

1)求證:BOE≌△DOF;

2)若OD=OC,則四邊形ABCD是什么特殊四邊形?請(qǐng)直接給出你的結(jié)論,不必證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在四邊形ABCD中,點(diǎn)G在邊BC的延長(zhǎng)線上,CE平分∠BCD,CF平分∠GCD,EF∥BCCD于點(diǎn)O.

(1)求證:OE=OF;

(2)若點(diǎn)OCD的中點(diǎn),求證:四邊形DECF是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察圖,回答下列問(wèn)題

1)在圖①中有幾個(gè)角?

2)在圖②中有幾個(gè)角?

3)在圖③中有幾個(gè)角?

4)以此類(lèi)推,如圖④所示,若一個(gè)角有n條射線,此時(shí)共有多少個(gè)角?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形的邊長(zhǎng)為4,點(diǎn)是正方形外一動(dòng)點(diǎn),,的中點(diǎn),當(dāng)運(yùn)動(dòng)時(shí),線段的最大值為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)軸是一個(gè)非常重要的數(shù)學(xué)工具,通過(guò)它把數(shù)和數(shù)軸上的點(diǎn)建立起對(duì)應(yīng)關(guān)系,揭示了數(shù)與點(diǎn)之間的內(nèi)在聯(lián)系,也體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想.如圖,數(shù)軸上的點(diǎn)、、、分別表示、0、2.56,請(qǐng)利用數(shù)軸解決下列問(wèn)題:

1)數(shù)軸上,兩點(diǎn)之間的距離是 ,、兩點(diǎn)之間的距離是 ,到點(diǎn)的距離是3個(gè)單位長(zhǎng)度的點(diǎn)所表示的數(shù)是

2)如果將點(diǎn)向左移動(dòng)7個(gè)單位長(zhǎng)度,再向右移動(dòng)5個(gè)單位長(zhǎng)度,請(qǐng)同學(xué)們?cè)跀?shù)軸上畫(huà)出點(diǎn)移動(dòng)的路線圖,并指出終點(diǎn)所表示的數(shù).

3)如果點(diǎn)是數(shù)軸上的另一點(diǎn),將點(diǎn)向右移動(dòng)3個(gè)單位長(zhǎng)度,再向左移動(dòng)5個(gè)單位長(zhǎng)度,終點(diǎn)表示的數(shù)是,那么點(diǎn)表示的數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解本校九年級(jí)學(xué)生期末數(shù)學(xué)考試情況,在九年級(jí)隨機(jī)抽取了一部分學(xué)生 的期末數(shù)學(xué)成績(jī)?yōu)闃颖荆譃?/span> A(90~100 分);B(80~89 分);C(60~79 分);D(0~59 分)四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制成如下統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答以下 問(wèn)題.

(1)這次隨機(jī)抽取的學(xué)生共有多少人?

(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)這個(gè)學(xué)校九年級(jí)共有學(xué)生 1200 人,若分?jǐn)?shù)為 80 分(含 80 分)以上為優(yōu)秀,請(qǐng)估 計(jì)這次九年級(jí)學(xué)生期末數(shù)學(xué)考試成績(jī)?yōu)閮?yōu)秀的學(xué)生人數(shù)大約有多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解:閱讀下列材料:已知二次三項(xiàng)式2x2+x+a有一個(gè)因式是(x+2),求另一個(gè)因式以及a 的值

解:設(shè)另一個(gè)因式是(2x+b),

根據(jù)題意,得2x2+x+a=(x+2)(2x+b),

展開(kāi),得2x2+x+a =2x2+(b+4)x+2b,

所以,解得,

所以,另一個(gè)因式是(2x3),a 的值是6.

請(qǐng)你仿照以上做法解答下題:已知二次三項(xiàng)式3x2 10x m 有一個(gè)因式是(x+4),求另一個(gè)因式以及m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為積極響應(yīng)弘揚(yáng)傳統(tǒng)文化的號(hào)召,某學(xué)校組織全校1200名學(xué)生進(jìn)行經(jīng)典詩(shī)詞誦讀活動(dòng),并在活動(dòng)之后舉辦經(jīng)典詩(shī)詞大賽,為了解本次系列活動(dòng)的持續(xù)效果,學(xué)校團(tuán)委在活動(dòng)啟動(dòng)之初,隨機(jī)抽取40名學(xué)生調(diào)查一周詩(shī)詞誦背數(shù)量,根據(jù)調(diào)查結(jié)果繪制成的統(tǒng)計(jì)圖如圖所示.

大賽結(jié)束后一個(gè)月,再次抽查這部分學(xué)生一周詩(shī)詞誦背數(shù)量,繪制成統(tǒng)計(jì)表如下:

一周詩(shī)詞誦背數(shù)量

3

4

5

6

7

8

人數(shù)

1

3

5

6

10

15

請(qǐng)根據(jù)調(diào)查的信息

1)求活動(dòng)啟動(dòng)之初學(xué)生一周詩(shī)詞誦背數(shù)量的中位數(shù);

2)估計(jì)大賽后一個(gè)月該校學(xué)生一周詩(shī)詞誦背6首(含6首)以上的人數(shù);

3)選擇適當(dāng)?shù)慕y(tǒng)計(jì)量,至少?gòu)膬蓚(gè)不同的角度分析兩次調(diào)查的相關(guān)數(shù)據(jù),評(píng)價(jià)該校經(jīng)典詩(shī)詞誦背系列活動(dòng)的效果.

查看答案和解析>>

同步練習(xí)冊(cè)答案