精英家教網 > 初中數學 > 題目詳情

【題目】如圖,ABC中邊AB的垂直平分線分別交BC,AB于點D,E,AE=3cm,ADC的周長為9cm,ABC的周長是(

A. 10cm B. 12cm C. 15cm D. 17cm

【答案】C

【解析】

DE△ABC中邊AB的垂直平分線,根據線段垂直平分線的性質,即可得BD=AD,AB=2AE,又由△ADC的周長為9cm,即可得AC+BC=9cm,繼而求得△ABC的周長.

解答:解:∵DE△ABC中邊AB的垂直平分線,

∴AD=BDAB=2AE=2×3=6cm),

∵△ADC的周長為9cm

AD+AC+CD=BD+CD+AC=BC+AC=9cm,

∴△ABC的周長為:AB+AC+BC=6+9=15cm).

∴△ABC的周長為15cm

故答案選C。

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,ABC為等邊三角形,點D,E分別在BC,AC邊上,且AECD,AD,BE相交于點PBQADQ,PQ=3,PE=1.

(1)求證:ABE≌△CAD;

(2) BE的長

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某市規(guī)定了每月用水18立方米以內(含18立方米)和用水18立方米以上兩種不同的收費標準.該市的用戶每月應交水費y(元)是用水量x(立方米)的函數,其圖象如圖所示.

(1)若某月用水量為18立方米,則應交水費多少元?
(2)求當x>18時,y關于x的函數表達式.若小敏家某月交水費81元,則這個月用水量為多少立方米?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,在ABC中,AB=AC,BDACD,CEABE,BD,CE相交于F.

求證:AF平分∠BAC.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABCD,則∠A、∠C、∠E、∠F滿足的數量關系是(  )

A. A=∠C+∠E+∠F B. A+∠E﹣∠C﹣∠F=180°

C. A﹣∠E+∠C+∠F=90° D. A+∠E+∠C+∠F=360°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,點E在AB上,以AE為直徑的⊙O與BC相切于點D,連接AD.
(1)求證:AD平分∠BAC;
(2)若⊙O的直徑為10,sin∠DAC= ,求BD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖在平面直角坐標系中,ABC各頂點的坐標分別為:A4,0),B﹣1,4),C﹣31

1)在圖中作A′B′C′使A′B′C′ABC關于x軸對稱;

2)寫出點A′B′C′的坐標;

3)求ABC的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系xOy,直線y=x﹣1與y軸交于點A,與雙曲線y= 交于點B(m,2).

(1)求點B的坐標及k的值;
(2)將直線AB平移,使它與x軸交于點C,與y軸交于點D,若△ABC的面積為6,求直線CD的表達式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(1)操作發(fā)現:如圖①,D是等邊ABC的邊BA上一動點(D與點B不重合),連接DC,以DC為邊在BC上方作等邊DCF,連接AF,你能發(fā)現AFBD之間的數量關系嗎?并證明你發(fā)現的結論;

(2)類比猜想:如圖②,當動點D運動至等邊ABCBA的延長線時,其他作法與(1)相同,猜想AFBD(1)中的結論是否仍然成立?

(3)深入探究:Ⅰ.如圖③,當動點D在等邊ABCBA上運動時(DB不重合),連接DC,以DC為邊在BC上方和下方分別作等邊DCF和等邊DCF′,連接AF,BF′,探究AF,BF′AB有何數量關系?并證明你的探究的結論;Ⅱ.如圖④,當動點D在等邊ABC的邊BA的延長線上運動時,其他作法與圖③相同,Ⅰ中的結論是否成立?若不成立,是否有新的結論?并證明你得出的結論.

查看答案和解析>>

同步練習冊答案