【題目】(1)操作發(fā)現(xiàn):如圖①,D是等邊ABC的邊BA上一動(dòng)點(diǎn)(點(diǎn)D與點(diǎn)B不重合),連接DC,以DC為邊在BC上方作等邊DCF,連接AF,你能發(fā)現(xiàn)AFBD之間的數(shù)量關(guān)系嗎?并證明你發(fā)現(xiàn)的結(jié)論;

(2)類(lèi)比猜想:如圖②,當(dāng)動(dòng)點(diǎn)D運(yùn)動(dòng)至等邊ABCBA的延長(zhǎng)線時(shí),其他作法與(1)相同,猜想AFBD(1)中的結(jié)論是否仍然成立?

(3)深入探究:Ⅰ.如圖③,當(dāng)動(dòng)點(diǎn)D在等邊ABCBA上運(yùn)動(dòng)時(shí)(點(diǎn)DB不重合),連接DC,以DC為邊在BC上方和下方分別作等邊DCF和等邊DCF′,連接AF,BF′,探究AF,BF′AB有何數(shù)量關(guān)系?并證明你的探究的結(jié)論;Ⅱ.如圖④,當(dāng)動(dòng)點(diǎn)D在等邊ABC的邊BA的延長(zhǎng)線上運(yùn)動(dòng)時(shí),其他作法與圖③相同,Ⅰ中的結(jié)論是否成立?若不成立,是否有新的結(jié)論?并證明你得出的結(jié)論.

【答案】(1)AF=BD;證明見(jiàn)解析;(2)成立,證明見(jiàn)解析;(3)Ⅰ.AF+BF′=AB;證明見(jiàn)解析;Ⅱ.Ⅰ中的結(jié)論不成立.新的結(jié)論是AF=AB+BF′;證明見(jiàn)解析.

【解析】解:(1AF=BD。證明如下:

∵△ABC是等邊三角形(已知),∴BC=AC,∠BCA=60°(等邊三角形的性質(zhì))。

同理知,DC=CF∠DCF=60°。

∴∠BCA﹣∠DCA=∠DCF﹣DCA,即∠BCD=∠ACF

△BCD△ACF中,∵BC=AC∠BCD=∠ACF,DC=CF,

∴△BCD≌△ACFSAS)。∴BD=AF(全等三角形的對(duì)應(yīng)邊相等)。

2AF=BD仍然成立。

3AF+BF′=AB。證明如下:

由(1)知,△BCD≌△ACFSAS),則BD=AF

同理△BCF′≌△ACDSAS),則BF′=AD。

∴AF+BF′=BD+AD=AB

中的結(jié)論不成立,新的結(jié)論是AF=AB+BF′。證明如下:

△BCF′△ACD中,∵BC=AC,∠BC F′=∠ACD,F′C=DC,

∴△BCF′≌△ACDSAS)。∴BF′=AD(全等三角形的對(duì)應(yīng)邊相等)。

又由(2)知,AF=BD,∴AF=BD=AB+AD=AB+BF′,即AF=AB+BF′。

1)根據(jù)等邊三角形的三條邊、三個(gè)內(nèi)角都相等的性質(zhì),利用全等三角形的判定定理SAS可以證得△BCD≌△ACF;然后由全等三角形的對(duì)應(yīng)邊相等知AF=BD

2)通過(guò)證明△BCD≌△ACF,即可證明AF=BD。

3AF+BF′=AB;利用全等三角形△BCD≌△ACFSAS)的對(duì)應(yīng)邊BD=AF;同理△BCF′≌△ACDSAS),則BF′=AD,所以AF+BF′=AB

中的結(jié)論不成立,新的結(jié)論是AF=AB+BF′:通過(guò)證明△BCF′≌△ACDSAS),則BF′=AD(全等三角形的對(duì)應(yīng)邊相等),再結(jié)合(2)中的結(jié)論即可證得AF=AB+BF′

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:a11÷a7_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)悉,超級(jí)磁力風(fēng)力發(fā)電機(jī)可以大幅度提升風(fēng)力發(fā)電效率,但其造價(jià)高昂,每座磁力風(fēng)力發(fā)電機(jī),其建造花費(fèi)估計(jì)要6300萬(wàn)美元,“6300萬(wàn)用科學(xué)記數(shù)法可表示為(  )

A.6.3×103B.6.3×104C.6.3×107D.6.3×108

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠BAC=90°,AD是高,BE是中線,CF是角平分線,CFAD于點(diǎn)G,交BE于點(diǎn)H,下面說(shuō)法正確的是(

ABE的面積與BCE的面積相等;② AFGAGF; FAG=2ACF; BHCH

A. ①②③ B. ②③④ C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC,DBC上任意一點(diǎn),過(guò)D分別向ABAC引垂線,垂足分別為E、F點(diǎn).

1)當(dāng)點(diǎn)DBC的什么位置時(shí),DE=DF?并證明.

2)在滿足第一問(wèn)的條件下,連接AD,此時(shí)圖中共有幾對(duì)全等三角形?并請(qǐng)給予寫(xiě)出(不 必證明).

3)過(guò)C點(diǎn)作AB邊上的高CG,請(qǐng)問(wèn)DE、DFCG的長(zhǎng)之間存在怎樣的等量關(guān)系?并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】城市發(fā)展 交通先行,成都市今年在中心城區(qū)啟動(dòng)了緩堵保暢的二環(huán)路高架橋快速通道建設(shè)工程,建成后將大大提升二環(huán)路的通行能力.研究表明,某種情況下,高架橋上的車(chē)流速度V(單位:千米/時(shí))是車(chē)流密度x(單位:輛/千米)的函數(shù),且當(dāng)0<x28時(shí),V=80;當(dāng)28<x188時(shí),V是x的一次函數(shù).函數(shù)關(guān)系如圖所示.

(1)求當(dāng)28<x188時(shí),V關(guān)于x的函數(shù)表達(dá)式;

(2)若車(chē)流速度V不低于50千米/時(shí),求當(dāng)車(chē)流密度x為多少時(shí),車(chē)流量P(單位:輛/時(shí))達(dá)到最大,并求出這一最大值.

(注:車(chē)流量是單位時(shí)間內(nèi)通過(guò)觀測(cè)點(diǎn)的車(chē)輛數(shù),計(jì)算公式為:車(chē)流量=車(chē)流速度×車(chē)流密度)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AC=BC,ACB=90°,AD平分BAC,BFAD,AD的延長(zhǎng)線交BF于E,且E為垂足,則結(jié)論AD=BF,CF=CD,AC+CD=AB,BE=CF,BF=2BE,其中正確的結(jié)論的個(gè)數(shù)是(

A.4 B.3 C.2 D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從﹣3、﹣2、﹣1、4、5中任取兩個(gè)數(shù)相加,若所得的和的最大值是a,最小值是b,則a+b的值是( 。

A. ﹣2 B. ﹣3 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)數(shù)的平方是正數(shù),則這個(gè)數(shù)是(  )

A.正數(shù)B.負(fù)數(shù)C.不為零的數(shù)D.非負(fù)數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案