【題目】如圖,在平面直角坐標(biāo)系中放置一菱形OABC,已知∠ABC=60°,OA=1.現(xiàn)將菱形OABC沿x軸的正方向無(wú)滑動(dòng)翻轉(zhuǎn),每次翻轉(zhuǎn)60°,連續(xù)翻轉(zhuǎn)2018次,點(diǎn)B的落點(diǎn)依次為B1,B2,B3,B4,…,則B2018的坐標(biāo)為________.
【答案】(1346,0)
【解析】
如圖,連接AC,根據(jù)條件可以求出AC,畫(huà)出第5次、第6次、第7次翻轉(zhuǎn)后的圖形,容易發(fā)現(xiàn)規(guī)律:每翻轉(zhuǎn)6次,圖形向右平移4.由于2018=336×6+2,因此點(diǎn)B2向右平移1344(即336×4)即可到達(dá)點(diǎn)B2018,根據(jù)點(diǎn)B2的坐標(biāo)就可求出點(diǎn)B2018的坐標(biāo).
連接AC,如圖所示,
∵四邊形OABC是菱形,
∴OA=AB=BC=OC,
∵∠ABC=60°,
∴△ABC是等邊三角形,
∴AC=AB,
∴AC=OA,
∵OA=1,
∴AC=1,
畫(huà)出第5次、第6次、第7次翻轉(zhuǎn)后的圖形,如圖所示,
由圖可知:每翻轉(zhuǎn)6次,圖形向右平移4,
∵2018=336×6+2,
∴點(diǎn)B2向右平移1344(即336×4)到點(diǎn)B2018,
∵B2的坐標(biāo)為(2,0),
∴B2018的坐標(biāo)為(2+1344,0),
∴B2018的坐標(biāo)為(1346,0),
故答案為:(1346,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把一塊等腰直角三角形零件(△ABC,其中∠ACB=90°),放置在一凹槽內(nèi),三個(gè)頂點(diǎn)A,B,C分別落在凹槽內(nèi)壁上,已知∠ADE=∠BED=90°,測(cè)得AD=5cm,BE=7cm,求該三角形零件的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小慧根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)圖像與性質(zhì)進(jìn)行了探究,下面是小慧的探究過(guò)程,請(qǐng)補(bǔ)充完整:
(1)若,為該函數(shù)圖像上不同的兩點(diǎn),則 ,該函數(shù)的最小值為 .
(2)請(qǐng)?jiān)谧鴺?biāo)系中畫(huà)出直線與函數(shù)的圖像并寫(xiě)出當(dāng)時(shí)的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)如下表:
(1)將下表補(bǔ)充完整,并在直角坐標(biāo)系中,畫(huà)出△A′B′C′;
(x,y) | (2x,2y) |
A(2,1) | A′(4,2) |
B(4,3) | B′( ) |
C(5,1) | C′( ) |
(2)觀察兩個(gè)三角形,可知△ABC∽△A′B′C′兩個(gè)三角形的是以原點(diǎn)為位似中心的位似三角形,△ABC與△A′B′C′的位似比為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道,假分?jǐn)?shù)可以化為整數(shù)與真分?jǐn)?shù)的和的形式.例如:,在分式中,對(duì)于只含有一個(gè)字母的分式,當(dāng)分子的次數(shù)大于或等于分母的次數(shù)時(shí),我們稱之為“假分式”;當(dāng)分子的次數(shù)小于分母的次數(shù)時(shí),我們稱之為“真分式”.例如:像,,這樣的分式是假分式;像,,這樣的分式是真分式.類似的,假分式也可以化為整數(shù)與真分式的和的形式.
例如:;
;
或
(1)分式是 分式(填“真”或“假”)
(2)將分式化為整式與真分式的和的形式;
(3)如果分式的值為整數(shù),求的整數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,某地有一座圓弧形的拱橋,橋下水面寬為8米(即AB=8米),拱頂高出水面為2米(即CD=2米).
(1)求這座拱橋所在圓的半徑.
(2)現(xiàn)有一艘寬6米,船艙頂部為正方形并高出水面1.5米的貨船要經(jīng)過(guò)這里,此時(shí)貨船能順利通過(guò)這座拱橋嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在等腰△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE=120°.
(1)求證:△ABD≌△ACE;
(2)把△ADE繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)到圖②的位置,連接CD,點(diǎn)M、P、N分別為DE、DC、BC的中點(diǎn),連接MN、PN、PM,判斷△PMN的形狀,并說(shuō)明理由;
(3)在(2)中,把△ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=6,請(qǐng)分別求出△PMN周長(zhǎng)的最小值與最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=﹣1,與x軸的一個(gè)交點(diǎn)A在點(diǎn)(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則下列結(jié)論:①4ac﹣b2<0;②2a﹣b=0;③a+b+c<0;④點(diǎn)M(x1,y1)、N(x2,y2)在拋物線上,若x1<x2,則y1≤y2,其中正確結(jié)論的個(gè)數(shù)是( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校計(jì)劃組織師生共310人參加一次野外研學(xué)活動(dòng),如果租用6輛大客車(chē)和5輛小客車(chē)恰好全部坐滿.已知每輛大客車(chē)的乘客座位數(shù)比小客車(chē)多15個(gè).
(1)求每輛大客車(chē)和每輛小客車(chē)的乘客座位數(shù);
(2)由于最后參加活動(dòng)的人數(shù)增加了20人,學(xué)校決定調(diào)整租車(chē)方案,在保持租用車(chē)輛總數(shù)不變的情況下,為將所有參加活動(dòng)的師生裝載完成,求租用小客車(chē)數(shù)量的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com