【題目】如圖,拋物線 x軸交于點A1,0),頂點坐標(biāo)(1,n),與y軸的交點在(0,3),(0,4)之間(包含端點),則下列結(jié)論:abc0;3a+b0;③﹣a1a+bam2+bmm為任意實數(shù));一元二次方程 有兩個不相等的實數(shù)根,其中正確的有( 。

A. 2 B. 3 C. 4 D. 5

【答案】B

【解析】解:拋物線開口向下,a0,頂點坐標(biāo)(1,n),對稱軸為直線x=1, =1b=2a0y軸的交點在(0,3),(0,4)之間(包含端點),3≤c≤4,abc0,故錯誤;

3a+b=3a+﹣2a=a0,故正確;

x軸交于點A1,0),ab+c=0,a2a+c=0c=3a,3≤3a≤4,∴﹣ a1,故正確;

頂點坐標(biāo)為(1n),當(dāng)x=1時,函數(shù)有最大值n,a+b+cam2+bm+ca+bam2+bm,故正確;

一元二次方程有兩個相等的實數(shù)根x1=x2=1,故錯誤.

綜上所述,結(jié)論正確的是②③④3個.故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,所有正三角形的一邊平行于軸,一頂點在軸上,從內(nèi)到外,它們的邊長依次為2,46,8,…,頂點依次用表示,其中軸、底邊、…均相距一個單位,則頂點的坐標(biāo)是__________的坐標(biāo)是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在扇形中,,,點上,,點的中點,點為弧上的動點,的交點為

1)當(dāng)四邊形的面積最大時,求;

2)求的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某圖書館計劃選購甲、乙兩種圖書.已知甲圖書每本價格是乙圖書每本價格的2.5倍,用800元單獨購買甲圖書比用800元單獨購買乙圖書要少24本.求甲、乙兩種圖書每本價格分別為多少元?我們設(shè)乙圖書每本價格為x元,則可得方程( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,F為弦AC的中點,連接OF并延長交弧AC于點D,過點DO的切線,交BA的延長線于點E

(1)求證:ACDE

(2)連接AD、CD、OC.填空

當(dāng)∠OAC的度數(shù)為   時,四邊形AOCD為菱形;

當(dāng)OAAE2時,四邊形ACDE的面積為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠ACB90°,AC6AB10,⊙CAB相切于點D,延長AC到點E,使CEAC,連接EB.過點EBE的垂線,交⊙C于點PQ,交BA的延長線于點F

1)求AD的長;

2)求證:EB與⊙C相切;

3)求線段PQ的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2020的寒假是一個特殊的假期.由于“新型冠狀肺炎病毒”影響,學(xué)校的開學(xué)日期不斷延后,在這期間某中學(xué)在學(xué)校微信公眾號上積極鼓勵學(xué)生靜在家中沉下心來參加“靜讀名著”活動,活動以讀名著的本書多少設(shè)為AB,CD,E五個等級,(本數(shù)依次為5,4,32,1),該校八(3)班全體學(xué)生參加了這次靜在家中沉下心來讀名著活動,芳芳同學(xué)通過調(diào)查并將這次讀書閱讀本數(shù)的結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中信息,解答下列問題:

1)該校八(3)班共有______學(xué)生;

2)扇形統(tǒng)計圖中B等級所對應(yīng)扇形的圓心角等于______度;

3)補(bǔ)全條形統(tǒng)計圖;

4)若該校有學(xué)生2500人讀名著的本書在BC級的人數(shù)一共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,AC是⊙O的一條弦,D為弧BC的中點,作DEAC,垂足為AC的延長線上的點E,連接DA,DB

(1)求證:DE為⊙O的切線;

(2)試探究線段AB,BDCE之間的數(shù)量關(guān)系,并說明理由;

(3)延長EDAB的延長線于F,若AD=DF,DE=,求⊙O的半徑;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(新知探究)新定義:平面內(nèi)兩定點 A, B ,所有滿足 k ( k 為定值) P 點形成的圖形是圓,我們把這種圓稱之為“阿氏圓”,

(問題解決)如圖,在ABC 中,CB 4 AB 2AC ,則ABC 面積的最大值為_____

查看答案和解析>>

同步練習(xí)冊答案