如圖,點(diǎn)C,D是以線(xiàn)段AB為公共弦的兩條圓弧的中點(diǎn),AB=4,點(diǎn)E,F(xiàn)分別是線(xiàn)段CD,AB上的動(dòng)點(diǎn),設(shè)AF=x,AE2-FE2=y,則能表示y與x的函數(shù)關(guān)系的圖象是( )

A.
B.
C.
D.
【答案】分析:延長(zhǎng)CE交AB于G,△AEG和△FEG都是直角三角形,運(yùn)用勾股定理列出y與x的函數(shù)關(guān)系式即可判斷出函數(shù)圖象.
解答:解:如右圖所示,延長(zhǎng)CE交AB于G.設(shè)AF=x,AE2-FE2=y;
∵△AEG和△FEG都是直角三角形
∴由勾股定理得:AE2=AG2+GE2,F(xiàn)E2=FG2+EG2,
∴AE2-FE2=AG2-FG2,即y=22-(2-x)2=-x2+4x,
這個(gè)函數(shù)是一個(gè)二次函數(shù),拋物線(xiàn)的開(kāi)口向下,對(duì)稱(chēng)軸為x=2,與x軸的兩個(gè)交點(diǎn)坐標(biāo)分別是(0,0),(4,0),頂點(diǎn)為(2,4),自變量0<x<4.
所以C選項(xiàng)中的函數(shù)圖象與之對(duì)應(yīng).
故選C.
點(diǎn)評(píng):本題為幾何與函數(shù)相結(jié)合的題型,同學(xué)們應(yīng)注意運(yùn)用勾股定理的重要性,它就是解決此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖①,點(diǎn)A(m,0)是x軸的上一點(diǎn),且|n|+
m-1
=0.以O(shè)A為一邊,在第四象限內(nèi)作等邊△OAB.C是x軸負(fù)半軸上的一動(dòng)點(diǎn),連接CB,在CB的上方作等邊△DCB,直線(xiàn)DA交y軸于E點(diǎn).
(1)求線(xiàn)段OA的長(zhǎng);
(2)當(dāng)C點(diǎn)在y軸的負(fù)半軸上運(yùn)動(dòng)時(shí),線(xiàn)段AE的長(zhǎng)度是否發(fā)生變化?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)證明你的結(jié)論并求出AE的長(zhǎng).
精英家教網(wǎng)精英家教網(wǎng)
(3)如圖②,F(xiàn)是點(diǎn)A關(guān)于y軸的對(duì)稱(chēng)點(diǎn),作直線(xiàn)FE.P是直線(xiàn)FE上的E點(diǎn)上方一動(dòng)點(diǎn),連接PA,在PA的左側(cè)作等邊△PAT,I是∠APT與∠PAT的角平分線(xiàn)的交點(diǎn).當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),點(diǎn)I是否總在y軸上運(yùn)動(dòng)?請(qǐng)判斷并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•鞍山一模)如圖,點(diǎn)C的坐標(biāo)為(0,3),點(diǎn)A的坐標(biāo)為(3
3
,0),點(diǎn)B在x軸上方且BA⊥x軸,tanB=
3
,過(guò)點(diǎn)C作CD⊥AB于D,點(diǎn)P是線(xiàn)段OA上一動(dòng)點(diǎn),PM∥AB交BC于點(diǎn)M,交CD于點(diǎn)Q,以PM為斜邊向右作直角三角形PMN,∠MPN=30°,PN、MN的延長(zhǎng)線(xiàn)交直線(xiàn)AB于E、F,設(shè)PO的長(zhǎng)為x,EF的長(zhǎng)為y.
(1)求線(xiàn)段PM的長(zhǎng)(用x表示);
(2)求點(diǎn)N落在直線(xiàn)AB上時(shí)x的值;
(3)求PE是線(xiàn)段MF的垂直平分線(xiàn)時(shí)直線(xiàn)PE的解析式;
(4)求y與x的函數(shù)關(guān)系式并寫(xiě)出相應(yīng)的自變量x取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)P是半圓O的直徑BA延長(zhǎng)線(xiàn)上的動(dòng)點(diǎn)(不與點(diǎn)A重合),以PO為直徑的半圓C與半圓O交于點(diǎn)D,∠DPB的平分線(xiàn)與半圓C交于點(diǎn)E,過(guò)E作EF⊥AB于點(diǎn)F,EG∥PB交PD于點(diǎn)G,連接GA.
(1)求證:PD是半圓O的切線(xiàn);
(2)若EF=
14
AB,當(dāng)GA與半圓O相切時(shí),求tan∠POE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,畫(huà)線(xiàn)段AB的垂直平分線(xiàn)交AB于點(diǎn)O,在這條垂直平分線(xiàn)上截取OC=OA,以A為圓心,AC為半徑畫(huà)弧于A(yíng)B與點(diǎn)P,則線(xiàn)段AP與AB的比是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

請(qǐng)同學(xué)們?cè)囈辉嚕?BR>(1)如圖(1),OP是∠MON的平分線(xiàn),請(qǐng)你利用該圖形畫(huà)一對(duì)以O(shè)P所在直線(xiàn)為對(duì)稱(chēng)軸的全等三角形.
(2)猜想一下:在一個(gè)三角形中,兩個(gè)內(nèi)角平分線(xiàn)相交而成的一個(gè)鈍角的度數(shù)與第三個(gè)內(nèi)角的度數(shù)之間有什么關(guān)系?(寫(xiě)出結(jié)論,并證明)(溫馨提醒:要畫(huà)圖、寫(xiě)已知、求證.) 下面的證明如果要用此題結(jié)論,則可以直接用.
(3)如圖(2)在△ABC中,∠B=60°,AD,CE分別是∠BAC,∠BCA的平分線(xiàn),AD,CE相交于點(diǎn)F,請(qǐng)你判別并寫(xiě)出FE與FD之間的數(shù)量關(guān)系;并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案