請同學們試一試:
(1)如圖(1),OP是∠MON的平分線,請你利用該圖形畫一對以OP所在直線為對稱軸的全等三角形.
(2)猜想一下:在一個三角形中,兩個內(nèi)角平分線相交而成的一個鈍角的度數(shù)與第三個內(nèi)角的度數(shù)之間有什么關系?(寫出結論,并證明)(溫馨提醒:要畫圖、寫已知、求證.) 下面的證明如果要用此題結論,則可以直接用.
(3)如圖(2)在△ABC中,∠B=60°,AD,CE分別是∠BAC,∠BCA的平分線,AD,CE相交于點F,請你判別并寫出FE與FD之間的數(shù)量關系;并證明你的結論.
分析:(1)在OM、ON上截取相同長度的線段,在OP上任取一點A,構造全等三角形即可;
(2)由在△ABC中,OB、OC是∠ABC、∠ACB的角平分線,根據(jù)三角形的內(nèi)角和定理即可求得∠OBC+∠OCB的值,然后在△OBC中,再利用三角形的內(nèi)角和定理,即可求得答案;
(3)通過證明△EAF≌△HAF(SAS),△FCH≌△FCD(ASA),根據(jù)全等三角形的性質即可得出結論.
解答:解:(1)作法:①以O為圓心,任意長為半徑作弧,分別交射線ON,OM于C,B兩點;
②在射線OP上任取一點A(O點除外);
③連接AB,AC.
則所得△AOB≌△AOC.
作圖如下:


(2)已知:如圖,在△ABC中,OB、OC分別是∠ABC、∠ACB的角平分線;求證:∠BOC=90°+
1
2
∠A.
證明:∵在△ABC中,OB、OC是∠ABC、∠ACB的角平分線;
∴∠OBC=
1
2
∠ABC,∠OCB=
1
2
∠ACB,
∵∠ABC+∠ACB=180°-∠A,
∴∠OBC+∠OCB=
1
2
(∠ABC+∠ACB)=
1
2
(180°-∠A)=90°-
1
2
∠A,
∴∠BOC=180°-(∠OBC+∠OCB)=180°-(90°-
1
2
∠A)=90°+
1
2
∠A;

(3)FE與FD之間的數(shù)量關系是EF=FD.理由如下:
在AC上截取AH=AE.
∵AD是∠EAC的平分線,
∴∠EAF=∠HAF.
在△EAF與△HAF中,
AE=AH
∠EAF=∠HAF
AF=AF
,
∴△EAF≌△HAF(SAS),
∴∠EFA=∠AFH,
∵∠B=60°.
∴由(2)得∠AFC=90°+
1
2
∠B=120°,
∴∠AFE=180°-∠AFC=60°=∠DFC.
∵∠EFA=∠AFH=60°,
∴∠HFC=180°-∠EFA-∠AFH=60°,
∴∠DFC=∠HFC.
∵CE是∠ACD的平分線,
∴∠FCH=∠FCD.
∵在△FCH與△FCD中,
∠FCH=∠FCD
FC=FC
∠DFC=∠HFC
,
∴△FCH≌△FCD(ASA),
∴FD=FH.
∵△EAF≌△HAF,
∴FE=FH,
∴EF=FD.
點評:本題考查的是熟練掌握尺規(guī)作圖的技巧和三角形全等的判定定理.同時考查了角平分線的性質,全等三角形的判定與性質以及直角三角形的性質.此題難度較大,解題的關鍵是注意數(shù)形結合思想的應用,注意輔助線的作法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:雙色筆記九年級數(shù)學(上) 題型:044

在“拋硬幣”的實驗中,可否用瓶蓋代替硬幣?如能,頻率穩(wěn)定的數(shù)值會不會一樣?請同學們試一試!

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

請同學們試一試:
(1)如圖(1),OP是∠MON的平分線,請你利用該圖形畫一對以OP所在直線為對稱軸的全等三角形.
(2)猜想一下:在一個三角形中,兩個內(nèi)角平分線相交而成的一個鈍角的度數(shù)與第三個內(nèi)角的度數(shù)之間有什么關系?(寫出結論,并證明)(溫馨提醒:要畫圖、寫已知、求證.) 下面的證明如果要用此題結論,則可以直接用.
(3)如圖(2)在△ABC中,∠B=60°,AD,CE分別是∠BAC,∠BCA的平分線,AD,CE相交于點F,請你判別并寫出FE與FD之間的數(shù)量關系;并證明你的結論.
作業(yè)寶

查看答案和解析>>

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《一次函數(shù)》(03)(解析版) 題型:解答題

(2003•黃岡)同學們都做過《代數(shù)》課本第三冊第87頁第4題:某禮堂共有25排座位,第一排有20個座位,后面每一排都比前一排多1個座位,寫出每排的座位數(shù)m與這排的排數(shù)n的函數(shù)關系式并寫出自變量n的取值范圍.
答案是:每排的座位數(shù)m與這排的排數(shù)n的函數(shù)關系式是m=n+19;自變量n的取值范圍是1≤n≤25,且n是正整數(shù).
上題中,在其他條件不變的情況下,請?zhí)骄肯铝袉栴}:
(1)當后面每一排都比前一排多2個座位時,則每排的座位數(shù)m與這排的排數(shù)n的函數(shù)關系式是______(1≤n≤25,且n是整數(shù));
(2)當后面每一排都比前一排多3個座位、4個座位時,則每排的座位數(shù)m與這排的排數(shù)n的函數(shù)關系式分別是______,______(1≤n≤25,且n是整數(shù));
(3)某禮堂共有p排座位,第一排有a個座位,后面每排都比前一排多b個座位,試寫出每排的座位數(shù)m與這排的排數(shù)n的函數(shù)關系式,并指出自變量n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2003年湖北省黃岡市中考數(shù)學試卷(解析版) 題型:解答題

(2003•黃岡)同學們都做過《代數(shù)》課本第三冊第87頁第4題:某禮堂共有25排座位,第一排有20個座位,后面每一排都比前一排多1個座位,寫出每排的座位數(shù)m與這排的排數(shù)n的函數(shù)關系式并寫出自變量n的取值范圍.
答案是:每排的座位數(shù)m與這排的排數(shù)n的函數(shù)關系式是m=n+19;自變量n的取值范圍是1≤n≤25,且n是正整數(shù).
上題中,在其他條件不變的情況下,請?zhí)骄肯铝袉栴}:
(1)當后面每一排都比前一排多2個座位時,則每排的座位數(shù)m與這排的排數(shù)n的函數(shù)關系式是______(1≤n≤25,且n是整數(shù));
(2)當后面每一排都比前一排多3個座位、4個座位時,則每排的座位數(shù)m與這排的排數(shù)n的函數(shù)關系式分別是______,______(1≤n≤25,且n是整數(shù));
(3)某禮堂共有p排座位,第一排有a個座位,后面每排都比前一排多b個座位,試寫出每排的座位數(shù)m與這排的排數(shù)n的函數(shù)關系式,并指出自變量n的取值范圍.

查看答案和解析>>

同步練習冊答案