【題目】點A,B在數(shù)軸上表示的數(shù)如圖所示. 動點P從點A出發(fā),沿數(shù)軸向右以每秒2個單位長度的速度運動到點B,再從點B以同樣的速度運動到點A停止,設(shè)點P運動的時間為t秒,解答下列問題.
(1)當t=2時,AP= 個單位長度,當t=6時,AP= 個單位長度;
(2)直接寫出整個運動過程中AP的長度(用含t的代數(shù)式表示);
(3)當AP=6個單位長度時,求t的值;
(4)當點P運動到線段AB的3等分點時,t的值為 .
【答案】(1)4, 8;(2)2t個單位長度或20-2t個單位長度;(3)t=3或7;(4),,,.
【解析】
(1)當t=2時,列式計算即可;當t=6時,點P到達點B,而且從點B向左運動1秒,即可求出答案;
(2)根據(jù)題意,可分為兩個過程,點P從點A運動到點B,和從點B運動回點A,進行分類討論,即可得到答案;
(3)當AP=6,分別代入(2)中的結(jié)論,即可求出答案;
(4)根據(jù)題意,AB的三等分點有兩個點,可分為4種情況進行分析,即可得到答案.
解:(1)根據(jù)題意,,
∴點P從點A運動到點B需要:秒;
∴當t=2時,;
當t=6時,;
故答案為:4,8 .
(2)根據(jù)題意,
當時,;
當時,;
∴整個運動過程中AP的長度為:2t個單位長度或個單位長度;
(3)∵AP=6,
當2t=6時,解得:t=3;
當20-2t=6時,解得:t=7;
(4)∵AB=10,
①當時,;
②當時,;
③當時,;
④當時,
綜上所述,t的值為:或或或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,對角線AC,BD相交于點O.EF過點O且與ABCD分別相交于點E,F
(1)如圖①,求證:OE=OF;
(2)如圖②,若EF⊥DB,垂足為O,求證:四邊形BEDF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C為線段BD上一動點,分別過點B,D作AB⊥BD,ED⊥BD,連接AC,EC.已知AB=5,DE=2,BD=12,設(shè)CD=x.
(1)用含x的代數(shù)式表示AC+CE的長;
(2)請問點C在BD上什么位置時,AC+CE的值最。
(3)根據(jù)(2)中的規(guī)律和結(jié)論,請構(gòu)圖求出代數(shù)式的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料: 1×2= (1×2×3-0×1×2),2×3= (2×3×4-1×2×3),3×4= (3×4×5- 2×3×4),
由以上三個等式左、右兩邊分別相加,可得:
1×2+2×3+3×4=×3×4×5=20
讀完以上材料,請你計算下列各題(寫出過程):
(1)1×2+2×3+3×4+…+10×11= ;
(2)1×2+2×3+3×4+…+n×(n+1)= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公交公司決定更換節(jié)能環(huán)保的新型公交車,購買的數(shù)量和所需費用如下表所示:
(1)求A型和B型公交車的單價:
(2)該公司計劃購買A型和B型兩種公交車共10輛,已知每輛A型公交車年均載客量為60萬人次,每輛B型公交車年均載客量為100萬人次;公交公司該如何購買這10輛公交車,才能確保公交車的年均載客量的總和不少于670萬人次,且所需費用最省,并求出最省的費用
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義[a,b,c]為函數(shù)y=ax2+bx+c的特征數(shù),下面給出特征數(shù)為[2m,1﹣m,﹣1﹣m]的函數(shù)的一些結(jié)論,其中不正確的是( )
A. 當m=﹣3時,函數(shù)圖象的頂點坐標是(,)
B. 當m>0時,函數(shù)圖象截x軸所得的線段長度大于
C. 當m≠0時,函數(shù)圖象經(jīng)過同一個點
D. 當m<0時,函數(shù)在x>時,y隨x的增大而減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某同學(xué)把一塊三角形的玻璃打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是( )
A.帶①去B.帶②去C.帶③去D.帶①和②去
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點D坐標(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關(guān)于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知(其中是各項的系數(shù), 是常數(shù)項),我們規(guī)定的伴隨多項式是,且. 如,則它的伴隨多項式.
請根據(jù)上面的材料,完成下列問題:
(1)已知,則它的伴隨多項式____________.
(2)已知,則它的伴隨多項式__________;若,求的值.
(3)已知二次多項式,并且它的伴隨多項式是,若關(guān)于的方程有正整數(shù)解,求的整數(shù)值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com