【題目】如圖,△ABC是等腰直角三角形,∠ACB=90°,AB=4,點D是AB的中點,動點P、Q同時從點D出發(fā)(點P、Q不與點D重合),點P沿D→A以1cm/s的速度向中點A運動.點Q沿D→B→D以2cm/s的速度運動.回到點D停止.以PQ為邊在AB上方作正方形PQMN,設正方形PQMN與△ABC重疊部分的面積為S(cm2),點P運動的時間為t(s).

(1)當點N在邊AC上時,求t的值.

(2)用含t的代數(shù)式表示PQ的長.

(3)當點Q沿D→B運動,正方形PQMN與△ABC重疊部分圖形是五邊形時,求S與t之間的函數(shù)關(guān)系式.

(4)直接寫出正方形PQMN與△ABC重疊部分圖形是軸對稱圖形時t的取值范圍.

【答案】1 ;(23t4-t;3t,S=t2+10t2; t1時, S=t2+6t;(40tt=

【解析】試題分析:1)由已知得出AD=BD=AB=2,由正方形的性質(zhì)得出PN=MN=MQ=PQ=3t,APN=QPN=PQM=NMQ=MNP=90°,由等腰直角三角形的性質(zhì)得出∠A=B=45°,求出∠ANP=A=45°,得出AP=PN,即可得出答案;

(2)分兩種情況:①當0<t≤1時,PQ=3t;②當1<t<2時,BQ=2t-2,求出DQ=4-2t,得出PQ=PD+DQ=4-t;

3)分兩種情況:①當時,QF=BQ=2-2t,ME=MF=5t-2,由正方形分面積減去等腰直角三角形的面積,即可得出答案;

②當≤t<1時,PG=AP=2-t,HQ=BQ=2-2t,由勾股定理得出AC=BC= ,由大等腰直角三角形的面積減去兩個小等腰直角三角形的面積,即可得出答案;

4)分兩種情況:①0<t≤AP=BQ,BQ=2t-2AP=2-t,解方程求出即可.

解:(1)如圖①所示:

AB=4,點DAB的中點,

AD=BD=AB=2,

∵四邊形ABCD是正方形,

PN=MN=MQ=PQ=3t,APN=QPN=PQM=NMQ=MNP=90°,

∵△ABC是等腰直角三角形,

∴∠A=B=45°,

∴∠ANP=A=45°,

AP=PN,

2﹣t=3t,

t=

(2)分兩種情況:

①當0t1時,PQ=3t;

②當1t2時,BQ=2t﹣2,

DQ=2﹣(2t﹣2)=4﹣2t,

PQ=PD+DQ=4﹣t;

(3)分兩種情況:

①當t時,如圖②所示:

QF=BQ=2﹣2t,ME=MF=3t﹣(2﹣2t)=5t﹣2,

S=(3t)2(5t﹣2)2=﹣t2+10t﹣2;

②當t1時,如圖③所示:

PG=AP=2﹣t,HQ=BQ=2﹣2t,

AC=BC=AB=2

S=×(22×(2﹣t)2×(2﹣2t)2=﹣t2+6t;

(4)分兩種情況:

①如圖④所示:此時0t;

②如圖⑤所示:

此時AP=BQ,BQ=2t﹣2,AP=2﹣t,

2﹣t=2t﹣2,

解得:t=;

綜上所述:正方形PQMN與△ABC重疊部分圖形是軸對稱圖形時t的取值范圍為0tt=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD的對角線ACBD相交于點O,且DEAC,CEBD

1)求證:四邊形OCED是菱形;

2)若AB=3AD=4,求四邊形OCED的周長和面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解下列方程:

1

2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+2x﹣3x軸交于A、B兩點,且B(1,0)

(1)求拋物線的解析式和點A的坐標;

(2)如圖1,點P是直線y=x上的動點,當直線y=x平分∠APB時,求點P的坐標;

3)如圖2,已知直線y=x分別與x軸、y軸交于CF兩點,點Q是直線CF下方的拋物線上的一個動點,過點Qy軸的平行線,交直線CF于點D,點E在線段CD的延長線上,連接QE.問:以QD為腰的等腰△QDE的面積是否存在最大值?若存在,請求出這個最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊三角形ABC中,點D、E分別在邊BC,AC上,DEAB,過點EEFDE,交BC的延長線于點FCD=2,則DF的長為(  )

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某自行車廠一周計劃生產(chǎn)輛自行車,平均每天生產(chǎn)自行車輛,由于各種原因,實際每天生產(chǎn)量與計劃每天生產(chǎn)量相比有出入.下表是某周的自行車生產(chǎn)情況(超計劃生產(chǎn)量為正、不足計劃生產(chǎn)量為負.單位:輛):

星期

增減

1)根據(jù)記錄可知前三天共生產(chǎn)自行車__________輛.

2)產(chǎn)量最多的一天比產(chǎn)量最少的一天多生產(chǎn)__________輛.

3)該廠實行按生產(chǎn)的自行車數(shù)量的多少計工資,即計件工資制.每生產(chǎn)一輛自行車可以得人民幣元,若超額完成任務,則超出部分,每輛元;若不足計劃數(shù)的,每少生產(chǎn)一輛扣元,那么該廠工人這一周的工資總額是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市舉行“第十七屆中小學生書法大賽”作品比賽,已知每幅參賽作品成績記為,組委會從1000幅書法作品中隨機抽取了部分參賽作品,統(tǒng)計了它們的成績,并繪制成如下統(tǒng)計圖表.

分數(shù)段

頻數(shù)

百分比

38

0.38

0.32

10

0.1

合計

100

1

書法作品比賽成績頻數(shù)直方圖

根據(jù)上述信息,解答下列問題:

(1)請你把表中空白處的數(shù)據(jù)填寫完整.

(2)請補全書法作品比賽成績頻數(shù)直方圖.

(3)80(80)以上的書法作品將被評為等級獎,試估計全市獲得等級的幅數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】乘法公式的探究及應用.

1)如圖1,可以求出陰影部分的面積是 (寫成兩數(shù)平方差的形式);

2)如圖2,若將陰影部分裁剪下來,重新拼成一個矩形,它的寬是 ,長是 ,面積是 (寫成多項式乘法的形式);

3)比較左、右兩圖的陰影部分面積,可以得到乘法公式 (用式子表達).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場對今年端午節(jié)這天銷售AB、C三種品牌粽子的情況進行了統(tǒng)計,繪制如圖1和圖2所示的統(tǒng)計圖根據(jù)圖中信息解答下列問題:

1哪一種品牌粽子的銷售量最大?

2補全圖1中的條形統(tǒng)計圖

3寫出A品牌粽子在圖2中所對應的圓心角的度數(shù).

查看答案和解析>>

同步練習冊答案