【題目】我市舉行“第十七屆中小學(xué)生書法大賽”作品比賽,已知每幅參賽作品成績記為,組委會從1000幅書法作品中隨機(jī)抽取了部分參賽作品,統(tǒng)計(jì)了它們的成績,并繪制成如下統(tǒng)計(jì)圖表.
分?jǐn)?shù)段 | 頻數(shù) | 百分比 |
38 | 0.38 | |
| 0.32 | |
|
| |
10 | 0.1 | |
合計(jì) | 100 | 1 |
書法作品比賽成績頻數(shù)直方圖
根據(jù)上述信息,解答下列問題:
(1)請你把表中空白處的數(shù)據(jù)填寫完整.
(2)請補(bǔ)全書法作品比賽成績頻數(shù)直方圖.
(3)若80分(含80分)以上的書法作品將被評為等級獎,試估計(jì)全市獲得等級的幅數(shù).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,點(diǎn)E在AB上,F(xiàn)是線段BD的中點(diǎn),連接CE、FE.
(1)若AD=3,BE=4,求EF的長;
(2)求證:CE=EF;
(3)將圖1中的△AED繞點(diǎn)A順時(shí)針旋轉(zhuǎn),使AED的一邊AE恰好與△ACB的邊AC在同一條直線上(如圖2),連接BD,取BD的中點(diǎn)F,問(2)中的結(jié)論是否仍然成立,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 在正方形ABCD中.
(1)如圖1,點(diǎn)E、F分別在BC、CD上,AE、BF相交于點(diǎn)O,∠AOB=90°,試判斷AE與BF的數(shù)量關(guān)系,并說明理由;
(2)如圖2,點(diǎn)E、F、G、H分別在邊BC、CD、DA、AB上,EG、FH相交于點(diǎn)O,∠GOH=90°,且EG=7,求FH的長;
(3)如圖3,點(diǎn)E、F分別在BC、CD上,AE、BF相交于點(diǎn)O,∠AOB=90°,若AB=5,圖中陰影部分的面積與正方形的面積之比為4:5,求△ABO的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等腰直角三角形,∠ACB=90°,AB=4,點(diǎn)D是AB的中點(diǎn),動點(diǎn)P、Q同時(shí)從點(diǎn)D出發(fā)(點(diǎn)P、Q不與點(diǎn)D重合),點(diǎn)P沿D→A以1cm/s的速度向中點(diǎn)A運(yùn)動.點(diǎn)Q沿D→B→D以2cm/s的速度運(yùn)動.回到點(diǎn)D停止.以PQ為邊在AB上方作正方形PQMN,設(shè)正方形PQMN與△ABC重疊部分的面積為S(cm2),點(diǎn)P運(yùn)動的時(shí)間為t(s).
(1)當(dāng)點(diǎn)N在邊AC上時(shí),求t的值.
(2)用含t的代數(shù)式表示PQ的長.
(3)當(dāng)點(diǎn)Q沿D→B運(yùn)動,正方形PQMN與△ABC重疊部分圖形是五邊形時(shí),求S與t之間的函數(shù)關(guān)系式.
(4)直接寫出正方形PQMN與△ABC重疊部分圖形是軸對稱圖形時(shí)t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】認(rèn)真閱讀下面的材料,完成有關(guān)問題.
材料:在學(xué)習(xí)絕對值時(shí),老師教過我們絕對值的幾何含義,如表示、在數(shù)軸上對應(yīng)的兩點(diǎn)之間的距離;,所以表示、在數(shù)軸上對應(yīng)的兩點(diǎn)之間的距離;,所以表示在數(shù)軸上對應(yīng)的點(diǎn)到原點(diǎn)的距離.
一般地,點(diǎn)、點(diǎn)在數(shù)軸上分別表示有理數(shù)、,那么點(diǎn)、點(diǎn)之間的距離可表示為.
(1)點(diǎn)、、在數(shù)軸上分別表示有理數(shù)、、,那么點(diǎn)到點(diǎn)的距離與點(diǎn)到點(diǎn)的距離之和可表示為__________(用含絕對值的式子表示).
(2)利用數(shù)軸探究:
①滿足的的取值范圍是__________.
②滿足的的所有值是__________.
③設(shè),當(dāng)的值取在不小于且不大于的范圍時(shí),的值是不變的,而且是的最小值,這個(gè)最小值是_____.
(3)拓展:
①的最小值為__________.
②的最小值為__________.
③的最小值為__________,此時(shí)的取值范圍為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格中,△ABC為格點(diǎn)三角形(頂點(diǎn)都是格點(diǎn)),將△ABC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)90°得到△AB1C1.
(1)在正方形網(wǎng)格中,作出△AB1C1;(不要求寫作法)
(2)設(shè)網(wǎng)格小正方形的邊長為1cm,用陰影表示出旋轉(zhuǎn)過程中線段BC所掃過的圖形,然后求出它的面積.(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠現(xiàn)有甲種原料360千克,乙種原料290千克,計(jì)劃利用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共50件,已知生產(chǎn)一件A種產(chǎn)品用甲種原料9千克,乙種原料3千克,可獲利700元;生產(chǎn)一件B種產(chǎn)品用甲種原料4千克,乙種原料10千克,可獲利1200元.
(1)按要求安排A、B兩種產(chǎn)品的生產(chǎn)件數(shù),有哪幾種方案?請你設(shè)計(jì)出來;
(2)設(shè)生產(chǎn)A、B兩種產(chǎn)品總利潤為y元,其中一種產(chǎn)品生產(chǎn)件數(shù)為x件,試寫出y與x之間的函數(shù)關(guān)系式,并利用函數(shù)的性質(zhì)說明那種方案獲利最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生體育訓(xùn)練的情況,某市從全市九年級學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行了一次體育科目測試(把測試結(jié)果分為四個(gè)等級:A級、B級、C級、D級),并將那個(gè)測試結(jié)果繪成了如下兩幅不完整的統(tǒng)計(jì)圖,請根據(jù)統(tǒng)計(jì)圖中的信息解答下列問題:
(1)本次抽樣測試的學(xué)生人數(shù)是 ;
(2)扇形圖中∠α的度數(shù)是 ,并把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)對A,B,C,D四個(gè)等級依次賦分為90,75,65,55(單位:分),比如:等級為A的同學(xué)體育得分為90分,…,依此類推.該市九年級共有學(xué)生32000名,如果全部參加這次體育測試,估計(jì)該市九年級不及格(即60分以下)學(xué)生的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,點(diǎn)E、F分別在邊AB和CD上,下列條件不能判定四邊形DEBF一定是平行四邊形的是( )
A.AE=CFB.DE=BFC.∠ADE=∠CBFD.∠AED=∠CFB
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com