【題目】若拋物線(xiàn)L:y=ax2+bx+c(a,b,c是常數(shù),abc≠0)與直線(xiàn)l都經(jīng)過(guò)y軸上的一點(diǎn)P,且拋物線(xiàn)L的頂點(diǎn)Q在直線(xiàn)l上,則稱(chēng)此直線(xiàn)l與該拋物線(xiàn)L具有“一帶一路”關(guān)系.此時(shí),直線(xiàn)l叫做拋物線(xiàn)L的“帶線(xiàn)”,拋物線(xiàn)L叫做直線(xiàn)l的“路線(xiàn)”.
(1)若直線(xiàn)y=mx+1與拋物線(xiàn)y=x2﹣2x+n具有“一帶一路”關(guān)系,求m,n的值;
(2)若某“路線(xiàn)”L的頂點(diǎn)在反比例函數(shù)y=的圖象上,它的“帶線(xiàn)”l的解析式為y=2x﹣4,求此“路線(xiàn)”L的解析式;
(3)當(dāng)常數(shù)k滿(mǎn)足≤k≤2時(shí),求拋物線(xiàn)L:y=ax2+(3k2﹣2k+1)x+k的“帶線(xiàn)”l與x軸,y軸所圍成的三角形面積的取值范圍.
【答案】(1)m的值為﹣1,n的值為1.(2)y=2(x+1)2﹣6或y=﹣(x﹣3)2+2.(3)≤S≤.
【解析】
試題分析:(1)確定直線(xiàn)y=mx+1與y軸的交點(diǎn)坐標(biāo),將其代入拋物線(xiàn)解析式中即可求出n的值;再根據(jù)拋物線(xiàn)的解析式找出頂點(diǎn)坐標(biāo),將其代入直線(xiàn)解析式中即可得出結(jié)論;(2)確定直線(xiàn)與反比例函數(shù)圖象的交點(diǎn)坐標(biāo),由此設(shè)出拋物線(xiàn)的解析式,再由直線(xiàn)的解析式找出直線(xiàn)與x軸的交點(diǎn)坐標(biāo),將其代入拋物線(xiàn)解析式中即可得出結(jié)論;(3)由拋物線(xiàn)解析式找出拋物線(xiàn)與y軸的交點(diǎn)坐標(biāo),再根據(jù)拋物線(xiàn)的解析式找出其頂點(diǎn)坐標(biāo),由兩點(diǎn)坐標(biāo)結(jié)合待定系數(shù)法即可得出與該拋物線(xiàn)對(duì)應(yīng)的“帶線(xiàn)”l的解析式,找出該直線(xiàn)與x、y軸的交點(diǎn)坐標(biāo),結(jié)合三角形的面積找出面積S關(guān)于k的關(guān)系上,由二次函數(shù)的性質(zhì)即可得出結(jié)論.
試題解析:(1)令直線(xiàn)y=mx+1中x=0,則y=1,
即直線(xiàn)與y軸的交點(diǎn)為(0,1);
將(0,1)代入拋物線(xiàn)y=x2﹣2x+n中,
得n=1.
∵拋物線(xiàn)的解析式為y=x2﹣2x+1=(x﹣1)2,
∴拋物線(xiàn)的頂點(diǎn)坐標(biāo)為(1,0).
將點(diǎn)(1,0)代入到直線(xiàn)y=mx+1中,
得:0=m+1,解得:m=﹣1.
答:m的值為﹣1,n的值為1.
(2)將y=2x﹣4代入到y(tǒng)=中有,
2x﹣4=,即2x2﹣4x﹣6=0,
解得:x1=﹣1,x2=3.
∴該“路線(xiàn)”L的頂點(diǎn)坐標(biāo)為(﹣1,﹣6)或(3,2).
令“帶線(xiàn)”l:y=2x﹣4中x=0,則y=﹣4,
∴“路線(xiàn)”L的圖象過(guò)點(diǎn)(0,﹣4).
設(shè)該“路線(xiàn)”L的解析式為y=m(x+1)2﹣6或y=n(x﹣3)2+2,
由題意得:﹣4=m(0+1)2﹣6或﹣4=n(0﹣3)2+2,
解得:m=2,n=﹣.
∴此“路線(xiàn)”L的解析式為y=2(x+1)2﹣6或y=﹣(x﹣3)2+2.
(3)令拋物線(xiàn)L:y=ax2+(3k2﹣2k+1)x+k中x=0,則y=k,
即該拋物線(xiàn)與y軸的交點(diǎn)為(0,k).
拋物線(xiàn)L:y=ax2+(3k2﹣2k+1)x+k的頂點(diǎn)坐標(biāo)為(﹣,),
設(shè)“帶線(xiàn)”l的解析式為y=px+k,
∵點(diǎn)(﹣,)在y=px+k上,
∴=﹣p+k,
解得:p=.
∴“帶線(xiàn)”l的解析式為y=x+k.
令∴“帶線(xiàn)”l:y=x+k中y=0,則0=x+k,
解得:x=﹣.
即“帶線(xiàn)”l與x軸的交點(diǎn)為(﹣,0),與y軸的交點(diǎn)為(0,k).
∴“帶線(xiàn)”l與x軸,y軸所圍成的三角形面積S=|﹣|×|k|,
∵≤k≤2,
∴≤≤2,
∴S===,
當(dāng)=1時(shí),S有最大值,最大值為;
當(dāng)=2時(shí),S有最小值,最小值為.
故拋物線(xiàn)L:y=ax2+(3k2﹣2k+1)x+k的“帶線(xiàn)”l與x軸,y軸所圍成的三角形面積的取值范圍為≤S≤.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班同學(xué)畢業(yè)時(shí)都將自己的照片向全班其他同學(xué)各送一張表示留念,全班共送1056張照片,如果全班有x名同學(xué),根據(jù)題意,列出方程為( )
A.x(x+1)=1056B.x(x-1)=1056C.x(x+1)=1056×2D.x(x-1)=1056×2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班“數(shù)學(xué)興趣小組”對(duì)函數(shù)的圖像和性質(zhì)進(jìn)行了探究,探究過(guò)程如下,請(qǐng)補(bǔ)充完整.
(1)自變量的取值范圍是全體實(shí)數(shù),與的幾組對(duì)應(yīng)值列表如下:
… | 0 | 1 | 2 | 3 | 4 | … | |||||
… | 3 | 0 | 0 | 3 | … |
其中,=____________.
(2)根據(jù)上表數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),并畫(huà)出了函數(shù)圖像的一部分,請(qǐng)畫(huà)出該圖像的另一部分.
(3)觀察函數(shù)圖像,寫(xiě)出兩條函數(shù)的性質(zhì):
(4)進(jìn)一步探究函數(shù)圖像發(fā)現(xiàn):
①函數(shù)圖像與軸有__________個(gè)交點(diǎn),所以對(duì)應(yīng)方程有___________個(gè)實(shí)數(shù)根;
②方程有___________個(gè)實(shí)數(shù)根;
③關(guān)于的方程有4個(gè)實(shí)數(shù)根,的取值范圍是_______________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小宜同學(xué)在百度搜索引擎中輸入“中國(guó)夢(mèng),我的夢(mèng)”,能搜索到與之相關(guān)的結(jié)果約為61700000條,這個(gè)數(shù)用科學(xué)記數(shù)法可表示為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明的數(shù)學(xué)作業(yè)本的紙上都是等距離的橫線(xiàn),他在上面任意畫(huà)一條不與這些橫線(xiàn)平行的直線(xiàn),那么這條直線(xiàn)被這些橫線(xiàn)所截得的線(xiàn)段( )
A. 平行 B. 相等 C. 平行或相等 D. 不相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次有24000名學(xué)生參加的數(shù)學(xué)質(zhì)量抽測(cè)的成績(jī)中,隨機(jī)取2000名考生的數(shù)學(xué)成績(jī)進(jìn)行分析,則在該抽樣中,樣本指的是( ).
A.所抽取的2000名考生的數(shù)學(xué)成績(jī)
B.24000名考生的數(shù)學(xué)成績(jī)
C.2000
D.2000名考生
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將一張等邊三角形紙片沿中位線(xiàn)剪成4個(gè)小三角形,稱(chēng)為第一次操作;然后,將其中的一個(gè)三角形按同樣方式再剪成4個(gè)小三角形,共得到7個(gè)小三角形,稱(chēng)為第二次操作;再將其中一個(gè)三角形按同樣方式再剪成4個(gè)小三角形,共得到10個(gè)小三角形,稱(chēng)為第三次操作;…根據(jù)以上操作,若要得到100個(gè)小三角形,則需要操作的次數(shù)是( )
A.25 B.33 C.34 D.50
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com