【題目】平面直角坐標(biāo)系xOy中,過原點(diǎn)O及點(diǎn)A(0,4)、C(12,0)作矩形OABC,∠AOC的平分線交AB于點(diǎn)D.點(diǎn)P從點(diǎn)O出發(fā),以每秒2個(gè)單位長度的速度沿射線OD方向移動(dòng);同時(shí)點(diǎn)Q從點(diǎn)O出發(fā),以每秒4個(gè)單位長度的速度沿x軸正方向移動(dòng).設(shè)移動(dòng)時(shí)間為t秒.

(1)當(dāng)點(diǎn)P移動(dòng)到點(diǎn)D時(shí),求出此時(shí)t的值.

(2)當(dāng)t為何值時(shí),△PQB為直角三角形.

(3)已知過O、P、Q三點(diǎn)的拋物線解析式為y=﹣.問是否存在某一時(shí)刻t,將△PQB繞某點(diǎn)旋轉(zhuǎn)180°后,三個(gè)對應(yīng)頂點(diǎn)恰好都落在上述拋物線上?若存在,求出t的值;若不存在,請說明理由.

【答案】(1)2;(2)當(dāng)t=2或t=5+或t=5﹣時(shí),PQB為直角三角形.(3)存在這樣的t值,t1=,t2=2.

【解析】

(1)首先根據(jù)矩形的性質(zhì)求出DO的長,進(jìn)而得出t的值;
(2)要使PQB為直角三角形,顯然只有∠PQB=90°或∠PBQ=90°,進(jìn)而利用勾股定理分別分析得出PB2=(12﹣2t)2+(4﹣2t)2,QB2=(12﹣4t)2+42,PQ2=(4t﹣2t)2+(2t)2=8t2再分別就∠PQB=90°和∠PBQ=90°討論,求出符合題意的t值即可;
(3)存在這樣的t值,若將PQB繞某點(diǎn)旋轉(zhuǎn)180°,三個(gè)對應(yīng)頂點(diǎn)恰好都落在拋物線上,則旋轉(zhuǎn)中心為PQ中點(diǎn),此時(shí)四邊形PBQB′為平行四邊形,根據(jù)平行四邊形的性質(zhì)和對稱性可求出t的值.

解:(1)∵四邊形OABC是矩形,

∴∠AOC=OAB=90°,

OD平分∠AOC,

∴∠AOD=DOQ=45°,

∴在RtAOD中,∠ADO=45°,

AO=AD=4,

(2)要使PQB為直角三角形,顯然只有∠PQB=90°或∠PBQ=90°.

如圖1,

PGOC于點(diǎn)G,在RtPOG中,

∵∠POQ=45°,

∴∠OPG=45°,

OG=PG=2t,

∴點(diǎn)P(2t,2t)

又∵Q(4t,0),B(12,4),

根據(jù)兩點(diǎn)間的距離公式可得:PB2=(12﹣2t)2+(4﹣2t)2,QB2=(12﹣4t)2+42,PQ2=(4t﹣2t)2+(2t)2=8t2,

①若∠PQB=90°,則有PQ2+BQ2=PB2

即:8t2+[(12﹣4t)2+42]=(12﹣2t)2+(4﹣2t)2,

整理得:t2﹣2t=0,

解得:t1=0(舍去),t2=2,

t=2,

②若∠PBQ=90°,則有PB2+QB2=PQ2,

[(12﹣2t)2+(4﹣2t)2]+[(12﹣4t)2+42]=8t2

整理得:t2﹣10t+20=0,

解得:

∴當(dāng)t=2時(shí),△PQB為直角三角形.

(3)存在這樣的t值,理由如下:

將△PQB繞某點(diǎn)旋轉(zhuǎn)180°,三個(gè)對應(yīng)頂點(diǎn)恰好都落在拋物線上,

則旋轉(zhuǎn)中心為PQ中點(diǎn),此時(shí)四邊形PBQB′為平行四邊形.

PO=PQ,由P(2t,2t),Q(4t,0),知旋轉(zhuǎn)中心坐標(biāo)可表示為(3t,t),

∵點(diǎn)B坐標(biāo)為(12,4),

∴點(diǎn)B′的坐標(biāo)為(6t﹣12,2t﹣4),

代入 得:2t2﹣13t+18=0,

解得:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AB=3,以B為圓心,AB長為半徑畫圓B,點(diǎn)P在圓B上移動(dòng),連接AP,并將AP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°Q,連接BQ,在點(diǎn)P移動(dòng)過程中,BQ長度的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由于霧霾天氣頻發(fā),市場上防護(hù)口罩出現(xiàn)熱銷,某醫(yī)藥公司每月固定生產(chǎn)甲、乙兩種型號的防霧霾口罩共20萬只,且所有產(chǎn)品當(dāng)月全部售出,原料成本、銷售單價(jià)及工人生產(chǎn)提成如表:

原料成本

12

8

銷售單價(jià)

18

12

生產(chǎn)提成

1

0.8

(1)若該公司五月份的銷售收入為300萬元,求甲、乙兩種型號的產(chǎn)品分別是多少萬只?

(2)公司實(shí)行計(jì)件工資制,即工人每生產(chǎn)一只口罩獲得一定金額的提成,如果公司六月份投入總成本(原料總成本+生產(chǎn)提成總額)不超過239萬元,應(yīng)怎樣安排甲、乙兩種型號的產(chǎn)量,可使該月公司所獲利潤最大?并求出最大利潤(利潤=銷售收入﹣投入總成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是本地區(qū)一種產(chǎn)品30天的銷售圖像,1是產(chǎn)品銷售量y()與時(shí)間t()的函數(shù)關(guān)系,2是一件產(chǎn)品的銷售利潤z()與時(shí)間t()的函數(shù)關(guān)系,已知日銷售利潤=日銷售量×每件產(chǎn)品的銷售利潤,下列結(jié)論錯(cuò)誤的是( )。

A. 24天的銷售量為200B. 10天銷售一件產(chǎn)品的利潤是15

C. 12天與第30天這兩天的日銷售利潤相等D. 30天的日銷售利潤是750

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣++2與x軸相交于A,B兩點(diǎn),(點(diǎn)A在B點(diǎn)左側(cè))與y軸交于點(diǎn)C.

(1)求A,B兩點(diǎn)坐標(biāo).

(2)連結(jié)AC,若點(diǎn)P在第一象限的拋物線上,P的橫坐標(biāo)為t,四邊形ABPC的面積為S.試用含t的式子表示S,并求t為何值時(shí),S最大.

(3)在(2)的基礎(chǔ)上,在整條拋物線上和對稱軸上是否分別存在點(diǎn)G和點(diǎn)H,使以A,G,H,P四點(diǎn)構(gòu)成的四邊形為平行四邊形?若存在,請直接寫出G,H的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點(diǎn)PBC的中點(diǎn),兩邊PEPF分別交AB、AC于點(diǎn)EF,當(dāng)∠EPFABC內(nèi)繞點(diǎn)P旋轉(zhuǎn)時(shí),下列結(jié)論①EF=AP;②EPF為等腰直角三角形;③AE=CF;④S四邊形AEPF,正確的有(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年春北方嚴(yán)重干旱,某社區(qū)人畜飲水緊張,每天需從社區(qū)外調(diào)運(yùn)飲用水120噸,有關(guān)部門緊急部署,從甲、乙兩水廠調(diào)運(yùn)飲用水到社區(qū)供水點(diǎn),甲廠每天最多可調(diào)出80噸,乙廠每天最多可調(diào)出90噸,從兩水廠運(yùn)水到社區(qū)供水點(diǎn)的路程和運(yùn)費(fèi)如下表:


到社區(qū)供水點(diǎn)的路程(千米)

運(yùn)費(fèi)(元/·千米)

甲廠

20

12

乙廠

14

15

1】若某天調(diào)運(yùn)水的總運(yùn)費(fèi)為26700元,則從甲、乙兩水廠各調(diào)運(yùn)多少噸飲用水?

2】設(shè)從甲廠調(diào)運(yùn)飲用水噸,總運(yùn)費(fèi)為W元,試寫出W關(guān)于與的函數(shù)關(guān)系式,怎樣安排調(diào)運(yùn)方案才能使每天的總運(yùn)費(fèi)最省?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線l1l2l3l4,相鄰兩條平行線間的距離均為h,矩形ABCD的四個(gè)頂點(diǎn)分別在這四條直線上,放置方式如圖所示,AB4,BC6,則tanα的值等于(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在寬20米,長32米的矩形耕地上,修筑同樣寬的三條路(兩條縱向,一條橫向,并且橫向與縱向互相垂直),把這塊耕地分成大小相等的六塊試驗(yàn)田,要使試驗(yàn)田的面積是570平方米,問道路應(yīng)該多寬?

查看答案和解析>>

同步練習(xí)冊答案